this is an equation that you need to solve for motional emf. motional emf=vBL, where v is velocity in meters/second, B is magnetic field in Teslas and L is length or distance the rails are apart from each other. when we plug everything into the formula given above, we get: motional emf=5m/s*0.80T*0.20m. solving all this we get 0.8 volts. pretty sure that since they are giving you the direction of the field, they want to know which way the current will flow . since the conductor is moving from left to right the area of the field is increasing which means magnetic flux is increasing as Ф(magnetic flux)=B(magnetic field)*A(area)*cosФ(little phi is the angle to the normal. in this case little fee is 0 degrees so the cosФ doesn't matter). so ↑Ф=B↑A. if magnetic flux is increasing, the induced magnetic field is in the opposite direction as the original magnetic field meaning the induced magnetic field will be out of the page. using the right hand rule which says that if the field is in to the page, the current should go clockwise and if the field is out of the page, the current is counterclockwise so that means that the current should be going counter clockwise since the induced field is going out of the screen. the top of the conducting wire will have its current go to the left and the bottom of the conducting wire will have the current go to the right.
Answer
given,
I = 0.140 kg ·m²
decrease from 3.00 to 0.800 kg ·m²/s in 1.50 s.
a) 

τ = -1.467 N m
b) angle at which fly wheel will turn



θ = 20.35 rad
c) work done on the wheel
W = τ x θ
W = -1.467 x 20.35 rad
W = -29.86 J
d) average power of wheel


Answer:
The change in temperature, 
Explanation:
Given that,
The temperature in Spearfish, South Dakota, rose from
in just 2 minutes. We need to find the temperature change in Celsius degrees. Change in temperature is given by final temperature minus initial temperature such that,

The relation between degrees Celsius and degrees Fahrenheit is given by :

Here, F = 49 degrees

So, the change in temperature is 9.45 degree Celsius. Hence, this is the required solution.
We would have to search at least 5,000,000,000 (5 billion) stars before we would expect to hear a signal.
To find out the number of stars that we will need to search to find a signal, we need to use the following formula:
- total of stars/civilizations
- 500,000,000,000 (500 billion) stars / 100 civilization = 5,000,000,000 (5 billion)
This shows it is expected to find a civilization every 5 billion stars, and therefore it is necessary to search at least 5 billion stars before hearing a signal from any civilization.
Note: This question is incomplete; here is the complete question.
On average, how many stars would we have to search before we would expect to hear a signal? Assume there are 500 billion stars in the galaxy.
Assuming 100 civilizations existed.
Learn more about stars in: brainly.com/question/2166533
Answer:
Explanation:
hormones. please mark me brainliest