Hi there!
Recall the equation for electric potential of a point charge:

V = Electric potential (V)
k = Coulomb's Constant(Nm²/C²)
Q = Charge (C)
r = distance (m)
We can begin by solving for the given electric potentials. Remember, charge must be accounted for. Electric potential is also a SCALAR quantity.
Upper right charge's potential:

Lower left charge's potential:

Add the two, and subtract from the total EP at the point:

The remaining charge must have a potential of 2036.25 V, so:

Answer:
Shiny metals such as copper, silver, and gold are often used for decorative arts, jewelry, and coins.
Strong metals such as iron and metal alloys such as stainless steel are used to build structures, ships, and vehicles including cars, trains, and trucks.
Some metals have specific qualities that dictate their use. For example, copper is a good choice for wiring because it is particularly good at conducting electricity. Tungsten is used for the filaments of light bulbs because it glows white-hot without melting.
Nonmetals are plentiful and useful. These are among the most commonly used:
Oxygen, a gas, is absolutely essential to human life. Not only do we breathe it and use it for medical purposes, but we also use it as an important element in combustion.
Sulfur is valued for its medical properties and as an important ingredient in many chemical solutions. Sulfuric acid is an important tool for industry, used in batteries and manufacturing.
Chlorine is a powerful disinfectant. It is used to purify water for drinking and fill swimming pools.
Explanation:
B) The object's velocity doubled.
Explanation:
The graph is missing: find it in attachment.
The kinetic energy of an object is the energy possessed by the object due to its motion. It is calculated as

where
m is the mass of the object
v is the velocity of the object
We notice that:
- The kinetic energy is directly proportional to the mass
- The kinetic energy is proportional to the square of the velocity
In the graph, one of the two quantities (either mass or speed) is represented on the x-axis, while the quantity on the y-axis is the kinetic energy.
First of all, we notice that the relationship is not linear: this means that the quantity on the x-axis cannot be the mass, so it must be the velocity.
Moreover, we notice that when the quantity on the x-axis increases from 1 to 2 (so, it doubles), the kinetic energy increases by a factor of 4. This means that the object's velocity has doubled, therefore
B) The object's velocity doubled.
Learn more about kinetic energy:
brainly.com/question/6536722
#LearnwithBrainly