The amount of heat needed to increase the temperature of a substance by

is given by

where m is the mass of the substance, Cs is its specific heat capacity and

is the increase of temperature.
If we re-arrange the formula, we get

And if we plug the data of the problem into the equation, we can find the specific heat capacity of the substance:
Answer:
The girl will move with constant velocity
Explanation:
If after a certain time t_0 the velocity of the girl is v_0 =gt_0 and the upward force on the girl due to rope is mg ,where g is gravitational acceleration. Then the girl will move down with the constant velocity v_0 .
The girl will move with constant velocity,as explained above.
Answer: 
Explanation:

where;
= final velocity = 0
= initial velocity = 60 km/h = 16.67 m/s
= acceleration
= distance
First all of, because acceleration is given in m/s and not km/h, you need to convert 60km/h to m/s. Our conversion factors here are 1km = 1000m and 1h = 3600s

Solve for a;

Begin by subtracting 

Divide by 2d

Now plug in your values:



If you're wondering why I calculated acceleration first is because in order to find force, we need 2 things: mass and acceleration.

m = mass = 900kg
a = acceleration = -2.78m/s

It's negative because the force has to be applied in the opposite direction that the car is moving.
Answer:
A
Explanation:
You did not list the options. However, knowing the possible options from having seen the material myself - I can infer that the answer option is A. I apologize sincerely if this is wrong.