The answer is <span>A. Speed=100 million m/s and frequency = 50 million Hz.</span>
Let's calculate for each choice the wavelength using the equation:
v = f × λ ⇒ λ = v ÷ f<span>
where:
v - the speed,
f - the frequency,
</span>λ - the wavelength.
A:
v = 100 000 000 m/s
f = 50 000 000 Hz = 50 000 000 1/s (Since f = 1/T, so units are Hz = 1/s)
⇒ λ = 100 000 000 ÷ 50 000 000 = 2 m
B:
v = 150 000 000 m/s
f = 1 500 Hz = 1 500 1/s
⇒ λ = 150 000 000 m/s ÷ 1 500 = 100 000 m
B:
v = 300 000 000 m/s
f = 100 Hz = 100 1/s
⇒ λ = 300 000 000 m/s ÷ 100 = 3 000 000 m
According to these calculations, the shortest wavelength is needed for choice A.
Answer:
Neither A or B
Explanation:
The 37.3mv is not the signal voltage
sensor ground circuit does not has excessive resistance.
<h2>
Answer:</h2>
An LC circuits if formed by an inductor and a capacitor. The charge on the capacitor and the current through the inductor both vary sinusoidally with time. Also, energy is transferred between magnetic energy in the inductor and electrical energy in the capacitor. But <em>what happens with the frequency if the inductance is quadrupled? </em>that is, if initially the inductance is
and the frecuency
if now
What will the frequency be? Well, we know that the frequency, inductance and capacitance are related as:

and this equals 2000Hz. If now L is quadrupled:

<em>Finally, if L is quadrupled the frequency is half the original frequency and equals 1000Hz</em>
Velocity adds direction to speed; it is the rate of travel in a particular direction. To calculate velocity, divide distance traveled by the time it took to travel that distance and add direction. If one's position does not change, velocity is zero.