125 cm^3 ——————)-)-()-)))-
        
             
        
        
        
Explanation:
Formula for steady flow energy equation for the flow of fluid is as follows.
     ![m[h_{1} + \frac{V^{2}_{1}}{2}] + z_{1}g] + q = m[h_{1} + \frac{V^{2}_{1}}{2} + z_{1}g] + w](https://tex.z-dn.net/?f=m%5Bh_%7B1%7D%20%2B%20%5Cfrac%7BV%5E%7B2%7D_%7B1%7D%7D%7B2%7D%5D%20%2B%20z_%7B1%7Dg%5D%20%2B%20q%20%3D%20m%5Bh_%7B1%7D%20%2B%20%5Cfrac%7BV%5E%7B2%7D_%7B1%7D%7D%7B2%7D%20%2B%20z_%7B1%7Dg%5D%20%2B%20w)
Now, we will substitute 0 for both 
 and 
, 0 for w, 334.9 kJ/kg for 
, 2726.5 kJ/kg for 
, 5 m/s for 
 and 220 m/s for 
.
Putting the given values into the above formula as follows.
      
  
      ![1 \times [334.9 \times 10^{3} J/kg + \frac{(5 m/s)^{2}}{2} + 0] + q = 1 \times [2726.5 \times 10^{3} + \frac{(220 m/s)^{2}}{2} + 0] + 0](https://tex.z-dn.net/?f=1%20%5Ctimes%20%5B334.9%20%5Ctimes%2010%5E%7B3%7D%20J%2Fkg%20%2B%20%5Cfrac%7B%285%20m%2Fs%29%5E%7B2%7D%7D%7B2%7D%20%2B%200%5D%20%2B%20q%20%3D%201%20%5Ctimes%20%5B2726.5%20%5Ctimes%2010%5E%7B3%7D%20%2B%20%5Cfrac%7B%28220%20m%2Fs%29%5E%7B2%7D%7D%7B2%7D%20%2B%200%5D%20%2B%200)
                 q = 6597.711 kJ
Thus, we can conclude that heat transferred through the coil per unit mass of water is 6597.711 kJ.
 
        
             
        
        
        
Answer: The tension in the string is zero 
Explanation:
 
        
             
        
        
        
the position that has least kinetic energy is option D
 
        
             
        
        
        
I just figured this out now.
First you would use the formula
Ephoton= hc/λ and substitute in the value's of plank's constant, the speed of light in a vaccum and the wavelength which will give you the energy in joules. Then you go to the reference table and solve for the energy used between the different levels for Mercury making sure to convert electron volts to jules. In the end the correct answer should be energy level D.