1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
slamgirl [31]
2 years ago
12

A man attempts to push a 19.8 kg crate across a warehouse floor. He slowly increases the force until the crate starts to move at

a force of 34.8 N. He then maintains this 34.8 N force while the box accelerates at 0.357 m/s^2. What is the coefficient of static friction between the crate and the floor?
Physics
2 answers:
VARVARA [1.3K]2 years ago
7 0

Answer:

 μ = 0.18

Explanation:

Let's use Newton's second Law, the coordinate system is horizontal and vertical

Before starting to move the box

Y axis

     N-W = 0

     N = W = mg

X axis

     F -fr = 0

     F = fr

The friction force has the formula

     fr = μ N

     fr =  μ m g

At the limit point just before starting the movement

     F = μ m g

     μ = F / m g

calculate

      μ = 34.8 / (19.8 9.8)

    μ = 0.18

notka56 [123]2 years ago
3 0

Answer:

The coefficient of friction between the crate and the floor = 0.143

Explanation:

Frictional Force: This is the force that act between two surface in contact and tend to oppose their motion. it is measured in Newton (N)

F - F₁ = ma.................... Equation 1

Where F = Force of the crate, F₁ = frictional force, m = mass of the crate, a = acceleration of the crate

making F₁ the subject the equation 1

F₁ = F - ma .................... Equation 2

<em>Given: F = 34. 8 N,  m = 19.8 kg. a = 0.357 m/s².</em>

Substituting these values into equation 2

F₁ = 34.8 - (19.8×0.357)

F₁ = 34.8 - 7.07

F₁ = 27.73 N.

F₁ = μR ............... equation 3

making μ the subject of formula in equation 3

μ = F₁/R.............. Equation 4

Where F₁ = Frictional Force, μ = coefficient of static friction, R = Normal reaction.

R = mg,  

where g = 9.8 m/s², m = 19.8 kg

R = 19.8( 9.8) = 194.04 N,

R = 194.04 N, F₁ = 27.73 N

Substituting these values into equation 4

 μ  = 27.73/194.04

μ  = 0.143.

therefore the coefficient of friction between the crate and the floor = 0.143

You might be interested in
Why is the crank on a meat grinder larger than the crank on a pencil
MArishka [77]
It takes more work to use a meat grinder
4 0
2 years ago
Read 2 more answers
A car of mass 998 kilograms moving in the positive y–axis at a speed of
aksik [14]
The total momentum should come out to be  <span>2.0 x 10^4 kilogram meters/second </span>
8 0
3 years ago
Read 2 more answers
. A spring has a length of 0.200 m when a 0.300-kg mass hangs from it, and a length of 0.750 m when a 1.95-kg mass hangs from it
kap26 [50]

Answer:

29.4 N/m

0.1  

Explanation:

a) From the restoring Force we know that :  

F_r = —k*x  

the gravitational force :  

F_g=mg  

Where:

F_r is the restoring force .

F_g is the gravitational force

g is the acceleration of gravity

k is the constant force  

xi , x2 are the displacement made by the two masses.

Givens:

<em>m1 = 1.29 kg</em>

<em>m2 = 0.3 kg  </em>

<em>x1   = -0.75 m  </em>

<em>x2 = -0.2 m </em>

<em>g   = 9.8 m/s^2  </em>

Plugging known information to get :

F_r =F_g

-k*x1 + k*x2=m1*g-m2*g

k=29.4 N/m

b) To get the unloaded length 1:  

l=x1-(F_1/k)

Givens:

m1 = 1.95kg , x1 = —0.75m  

Plugging known infromation to get :

l= x1 — (F_1/k)  

= 0.1  

 

3 0
3 years ago
A 5 N force is applied to a 3 kg ball to change its velocity from 9 m/s to 3 m/s. What is the impulse on the ball ?
nika2105 [10]
So, first the formula of Impulse is
I = force * time
We have force but no time.
Then, find time.
Next find acceleration,
F = mass * acceleration
5 = 3 * a
1.67 m/s^2
Next find time,
Acceleration = change in velocity / time
Change in velocity is velocity final - velocity initial
1.67 = 3 - 9 / time
Time = 3.6 s (round to 2 s.f.)
Lastly,
Impulse = force * time
Impulse = 5 * 3.6
Impulse is 18 Ns
3 0
2 years ago
You serve a volleyball with a mass of 2.1 kg. The ball leaves your hand with a speed of 35 m/s. The ball has __________________
Elden [556K]

Answer:

The ball has kinetic energy

the kinetic energy is 945 J

Explanation:

4 0
2 years ago
Read 2 more answers
Other questions:
  • A car travels from stop A to stop B with a speed of 30 km/h and then returns back to A with a speed of 50 km/h. Find
    12·1 answer
  • How do I do this it is for science and I do not want to fail<br>​
    7·1 answer
  • Electrons are accelerated through a voltage difference of 230 kV inside a high voltage accelerator tube. What is the final kinet
    9·1 answer
  • A bullet is fired horizontally with an initial velocity of 144.7 m/s from a tower 11 m high. if air resistance is negligible, wh
    10·1 answer
  • An archer puts a 0.30 kg arrow to the bowstring. An average force of 201 N is exerted to draw the string back 1.3 m.a. Assuming
    6·1 answer
  • While riding on an elevator descending with a constant speed of 2.7 m/s , you accidentally drop a book from under your arm. How
    11·1 answer
  • True or False: How much we weigh on Earth is a direct result of the force of the Earth's gravity.
    5·2 answers
  • Identify the magnetic north pole of Earth’s magnet?
    6·2 answers
  • Choose the incorrect statement about the proton: Group of answer choices The proton has the atomic mass of 1 amu The proton has
    15·1 answer
  • A spring does 5.0 J of work on a 0.10-kg ball bearing in a pinball machine. The ball's
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!