Its an electrochemical cell that derives electrical energy from spontaneous redox reactions taking place within the cell.
<h2>Answer: free electrons</h2>
<u>Plasma</u> is known as the 4th state of matter and is itself ionized gas. In this sense, ionization consists of the production of ions, which are <u>electrically charged atoms or molecules due to</u><u> the excess or lack of electrons</u><u> with respect to a neutral atom or molecule.
</u>
That is why in this process there are always<u> free electrons</u>. Therefore in heating gas to create plasma can yield free electrons, and the correct option is D.
Answer:
solution:
to find the speed of a jogger use the following relation:
V
=
d
x
/d
t
=
7.5
×m
i
/
h
r
...........................(
1
)
in Above equation in x and t. Separating the variables and integrating,
∫
d
x
/7.5
×=
∫
d
t
+
C
or
−
4.7619
=
t
+
C
Here C =constant of integration.
x
=
0 at t
=
0
, we get: C
=
−
4.7619
now we have the relation to find the position and time for the jogger as:
−
4.7619 =
t
−
4.7619
.
.
.
.
.
.
.
.
.
(
2
)
Here
x is measured in miles and t in hours.
(a) To find the distance the jogger has run in 1 hr, we set t=1 in equation (2),
to get:
= −
4.7619
=
1
−
4.7619
= −
3.7619
or x
=
7.15
m
i
l
e
s
(b) To find the jogger's acceleration in m
i
l
/
differentiate
equation (1) with respect to time.
we have to eliminate x from the equation (1) using equation (2).
Eliminating x we get:
v
=
7.5×
Now differentiating above equation w.r.t time we get:
a
=
d
v/
d
t
=
−
0.675
/
At
t
=
0
the joggers acceleration is :
a
=
−
0.675
m
i
l
/
=
−
4.34
×
f
t
/
(c) required time for the jogger to run 6 miles is obtained by setting
x
=
6 in equation (2). We get:
−
4.7619
(
1
−
(
0.04
×
6 )
)^
7
/
10=
t
−
4.7619
or
t
=
0.832
h
r
s
Answer:
Staples, Bestbuy, Maybe Homedepot
Explanation:
Answer:
F = 147,78*10⁻⁹ [N]
Explanation:
By symmetry the Fy components of the forces acting on charge in point x = 0,7 m canceled each other, and the total force will be twice Fx ( Fx is x axis component of one of the forces .
The angle β ( angle between the line running through one of the charges in y axis and the charge in x axis) is
tan β = 0,5/0,7
tan β = 0,7142 then β = arctan 0,7142 ⇒ β = 35 ⁰
cos β = 0,81
d = √ (0,5)² + (0,7)² d1stance between charges
d = √0,25 + 0,49
d = √0,74 m
d = 0,86 m
Now Foce between two charges is:
F = K* q₁*q₂/ d² (1)
Where K = 9*10⁹ N*m²/C²
q₁ = 2,5* 10⁻⁹C
q₂ = 3,0*10⁻⁹C
d² = 0,74 m²
Plugging these values in (1)
F = 9*10⁹* 2,5* 10⁻⁹*3,0*10⁻⁹ / 0,74 [N*m²/C²]*C*C/m²
F = 91,21 * 10⁻⁹ [N]
And Fx = F*cos β
Fx = 91,21 * 10⁻⁹ *0,81
Fx =73,89*10⁻⁹ [N]
Then total force acting on charge located at x = 0,7 m is:
F = 2* Fx
F = 2*73,89*10⁻⁹ [N]
F = 147,78*10⁻⁹ [N]