Vascular tissue transports water, minerals, and sugars to different parts of the plant. Vascular tissue is made of two specialized conducting tissues: xylem and phloem. Xylem tissue transports water and nutrients from the roots to different parts of the plant, and also plays a role in structural support in the stem.
a) They are solid at ambient temperatures of 25 ° C and pressure of 1 atm.
b) Ionic compounds represent high temperature melting and boiling.
c) They are hard and brittle and then subjected to the impact, break easily, creating planar faces.
d) When dissolved in water, or pure liquid, carry electrical current due to the existence of ions that move freely and can be attracted by the electrodes, closing the electric circuit.
<span>e) His solvent is water. </span>
Answer:
a. ionic, 211.62g/mol
b. molecular, 149g/mol
c. molecular, 342g/mol
Explanation:
Ionic Compound: These are compounds (2 or more elements) where atoms of the element have lost or gained electrons, thus they are ions, thus the name ionic. An easy way to identify ionic compounds is to see if there are any metals. Metals tend to give up their electron to a non-metal. It maybe helpful to familiarize which parts of the periodic table have metals and non-metals.
Molecular Compounds: These are compounds (2 or more elements) that are neutral. An easy way to identify them is that the compound is made up of just non-metals.
Molar Mass is the masses of each individual element in the compound. Refer to the periodic table for the masses and add them up carefully, remember to multiply their mass based on how many molecules there are in the compound, like for a, we can find the mass of NO3, but we need to multiply it by 2 since we have 2 molecules of NO3.
a. Sr(NO3)2
Sr= 87.62
NO3= 14 + (3 x 16)= 62
Sr + 2 (NO3)
87.62 + (2 x 62)= 211.6
b. (NH4)3PO4
NH4= 14 + 4 = 18
PO4= 30.97 + (4 x 16)= 94.9
(NH4 x 3) + PO4
(18 x 3) + 94.9 = 149
c. C12H22O11
(12 x C) + (22 x H) + (11 x O)
(12 x 12) + (22 x 1) + (11 x 16)
144 + 22 + 176= 342
No because they are both made up of H2O molecules; they only have different physical properties, one is in liquid state while the other is in solid state
Answer:
1: The speculation that continents might have 'drifted' was first put forward by Abraham Ortelius in 1596. The concept was independently and more fully developed by Alfred Wegener in 1912, but his hypothesis was rejected by many for lack of any motive mechanism. 2: The most obvious evidence for continental drift is that the continents appear to fit together like pieces of a puzzle. But scientists were skeptical , and Wegener needed additional evidence to support his hypothesis. Glaciers covered large areas that are now parts of these continents.