Answer:
Explanation:
Adding any solute to water will increase the boiling temperature, as it reduces the vapour pressure, meaning a slightly higher temperature is required in order for the vapour pressure to become equal to atmospheric pressure and boil the water. Essentially, adding any non-volatile solute (such as salt, baking soda or sugar) to a liquid causes a decrease in the liquid's vapour pressure.
The heat of reaction : 50.6 kJ
<h3>Further explanation</h3>
Based on the principle of Hess's Law, the change in enthalpy of a reaction will be the same even though it is through several stages or ways
Reaction
N₂(g) + 2H₂(g) ⇒N₂H₄(l)
thermochemical data:
1. N₂H₄(l)+O₂(g)⇒N₂(g)+2H₂O(l) ΔH=-622.2 kJ
2. H₂(g)+1/2O₂(g)⇒H₂O(l) ΔH=-285.8 kJ
We arrange the position of the elements / compounds so that they correspond to the main reaction, and the enthalpy sign will also change
1. N₂(g)+H₂O(l) ⇒ N₂H₄(l)+O₂(g) ΔH=+622.2 kJ
2. H₂(g)+1/2O₂(g)⇒H₂O(l) ΔH=-285.8 kJ x 2 ⇒
2H₂(g)+O₂(g)⇒2H₂O(l) ΔH=-571.6 kJ
Add reaction 1 and reaction 2, and remove the same compound from different sides
1. N₂(g)+2H₂O(l) ⇒ N₂H₄(l)+O₂(g) ΔH=+622.2 kJ
2.2H₂(g)+O₂(g)⇒2H₂O(l) ΔH=-571.6 kJ
-------------------------------------------------------------------- +
N₂(g) + 2H₂(g) ⇒N₂H₄(l) ΔH=50.6 kJ
Answer:
But-2-ene is your answer i guess
The balanced chemical reaction is:
Zn + 2AgNO3 = Zn(NO3)2 + 2Ag
To determine the amount of the reactant left, we have to determine which is the limiting and the excess reactant. We do as follows:
5.65 g Zn ( 1 mol / 65.38 g) = 0.09 mol Zn
21.6 g AgNO3 (1 mol / 169.87 g) = 0.13 mol AgNO3
The limiting reactant would be silver nitrate since it is consumed completely in the reaction. The excess reactant would be zinc.
Excess Zinc = 0.09 mol Zn - (0.13 / 2) mol Zn = 0.025 mol Zn left