Explanation:
The object is moving along the parabola y = x² and is at the point (√2, 2). Because the object is changing directions, it has a centripetal acceleration towards the center of the circle of curvature.
First, we need to find the radius of curvature. This is given by the equation:
R = [1 + (y')²]^(³/₂) / |y"|
y' = 2x and y" = 2:
R = [1 + (2x)²]^(³/₂) / |2|
R = (1 + 4x²)^(³/₂) / 2
At x = √2:
R = (1 + 4(√2)²)^(³/₂) / 2
R = (9)^(³/₂) / 2
R = 27 / 2
R = 13.5
So the centripetal force is:
F = m v² / r
F = m (5)² / 13.5
F = 1.85 m
Take for example driving by with a cake in your hand, then dropping it while going 30 mph. It will not drop directly down, it will gradually go in the direction you were driving while falling.
This is true I believe, if I'm interpreting correctly.
<h3>Answer</h3>
6.6 N pointing to the right
<h3>Explanation</h3>
Given that,
two forces acting of magnitude 3.6N
angle between them = 48°
To find,
the third force that will cause the object to be in equilibrium
<h3>1)</h3>
Find the vertical and horizontal components of the two forces
vertical force1 = sin(24)(3.6)
vertical force2= -sin(24)(3.6)
<em>(negative sign since it is acting on opposite direction)</em>
vertical force3 = sin(24)(3.6) - sin(24)(3.6)
= 0
<h3>2)</h3>
horizontal force1 = cos(24)(3.6)
horizontal force2= cos(24)(3.6)
horizontal force3 = cos(24)(3.6) + cos(24)(3.6)
= 2(cos(24)(3.6))
= 6.5775 N
≈ 6.6 N
<em />
<em />
It holds more weight in the regular water.