Answer:
An aircraft flying at sea level with a speed of 220 m/s, has a highest pressure of 29136.8 N/m²
Explanation:
Applying Bernoulli's equation, we determine the highest pressure on the aircraft.

where;
P is the highest pressure on the aircraft
is the density of air = 1.204 kg/m³ at sea level temperature.
V is the velocity of the aircraft = 220 m/s
P = 0.5*1.204*(220)² = 29136.8 N/m²
Therefore, an aircraft flying at sea level with a speed of 220 m/s, has a highest pressure of 29136.8 N/m²
Answer:
Approximately 18 volts when the magnetic field strength increases from
to
at a constant rate.
Explanation:
By the Faraday's Law of Induction, the EMF
that a changing magnetic flux induces in a coil is:
,
where
is the number of turns in the coil, and
is the rate of change in magnetic flux through this coil.
However, for a coil the magnetic flux
is equal to
,
where
is the magnetic field strength at the coil, and
is the area of the coil perpendicular to the magnetic field.
For this coil, the magnetic field is perpendicular to coil, so
and
. The area of this circular coil is equal to
.
doesn't change, so the rate of change in the magnetic flux
through the coil depends only on the rate of change in the magnetic field strength
. The size of the magnetic field at the instant that
will not matter as long as the rate of change in
is constant.
.
As a result,
.
Hello
1) Since there is no friction between the ice and the track, there is no loss of energy in the motion, so we can apply the law of conservation of energy.
The total energy E (sum of potential energy P and kinetic energy K) must be conserved:
2) At the beginning of the motion, the total energy of the object is just potential energy:
where m is the mass,

is the gravitational acceleration, and

is the initial height of the body.
3) At the end of the motion, this potential energy has converted into kinetic energy, and so the total energy at this point is

where m is the mass and v is the final velocity of the object.
4) We said that the total energy must be conserved, therefore we can write

and so:

from which we can find v, the velocity:
Refraction of light is the process we take advantage of when we use eyeglasses.