Answer:
Yeah
Explanation:
I mean, how about gravity for example! When you draw a free-body diagram, you will almost always have to include gravity. How about normal force, or static friction? There are defintely forces at hand.
the answer would be B. the back emf increases, and the current drawn from the socket increases
more current is needed to make the motor move, like when you try to self crank a motor and the back wires are touching its harder to crank. and the emf increases since more current is being drawn in, strengthening the emf or increasing the emf
Answer:
B:The breakdown of rocks into smaller rocks
Explanation:
Physical weathering is breaking down rocks, but it doesn't change what the rock is made out of.
Answer:

Explanation:
Given that
B(y, t) = k y ³t²
To find the total flux over the loop we have to integrate over the loop

Given that loop is square,so

B(y, t) = k y ³t²


We know that emf given as


So

<span>Extrusive igneous rocks form when magma reaches the Earth's surface a volcano and cools quickly. Most extrusive (volcanic) rocks have small crystals. Examples include basalt, rhyolite, andesite, and obsidian.</span>