Yes it can because it had lots of force
Answer:
you need at least two out of the three to get any aenser
Initial velocity (u) = 2 m/s
Acceleration (a) = 10 m/s^2
Time taken (t) = 4 s
Let the final velocity be v.
By using the equation,
v = u + at, we get
or, v = 2 + 10 × 4
or, v = 2 + 40
or, v = 42
The final velocity is 42 m/s.
Explanation:
Given that,
Initial speed of the bag, u = 7.3 m/s
Height above ground, s = 24 m
We need to find the speed of the bag just before it reaches the ground. It can be calculated using third equation of motion as :


v = 22.88 m/s
So, the speed of the bag just before it reaches the ground is 22.38 m/s. Hence, this is the required solution.
Q = mcθ
Where m = mass of water in kg.
c = specific heat capacity in kJ/kg⁰C, c for water = 4200 kJ/kg⁰C
θ = temperature rise in ⁰C
Q = 100*4200* 20 Note here the temperature rise is 20 ⁰C
Q = 8 400 000 J
In calories, 4.2 J = 1 Calorie
= 8 400 000 / 4.2 = 200 000
Q = 200 000 Calories