Answer:
T'=92.70°C
Explanation:
To find the temperature of the gas you use the equation for ideal gases:

V: volume = 3000cm^3 = 3L
P: pressure = 1250mmHg; 1 mmHg = 0.001315 atm
n: number of moles
R: ideal gas constant = 0.082 atm.L/mol.K
T: temperature = 27°C = 300.15K
For the given values you firs calculate the number n of moles:
![n=\frac{PV}{RT}=\frac{(1520[0.001315atm])(3L)}{(0.082\frac{atm.L}{mol.K})(300.15K)}=0.200moles](https://tex.z-dn.net/?f=n%3D%5Cfrac%7BPV%7D%7BRT%7D%3D%5Cfrac%7B%281520%5B0.001315atm%5D%29%283L%29%7D%7B%280.082%5Cfrac%7Batm.L%7D%7Bmol.K%7D%29%28300.15K%29%7D%3D0.200moles)
this values of moles must conserve when the other parameter change. Hence, you have V'=2L and P'=3atm. The new temperature is given by:

hence, T'=92.70°C
Answer:
<em>The velocity of the carts after the event is 1 m/s</em>
Explanation:
<u>Law Of Conservation Of Linear Momentum
</u>
The total momentum of a system of bodies is conserved unless an external force is applied to it. The formula for the momentum of a body with mass m and speed v is
P=mv.
If we have a system of bodies, then the total momentum is the sum of the individual momentums:

If a collision occurs and the velocities change to v', the final momentum is:

Since the total momentum is conserved, then:
P = P'
In a system of two masses, the equation simplifies to:

If both masses stick together after the collision at a common speed v', then:

The common velocity after this situation is:

The m1=2 kg cart is moving to the right at v1=5 m/s. It collides with an m2= 8 kg cart at rest (v2=0). Knowing they stick together after the collision, the common speed is:

The velocity of the carts after the event is 1 m/s
Answer:
Explanation:
the one thrown below the horizontal is going straight down, while the one above the horizontal will experience a projectile motion which will makes it move farther away from the building where it was projected.
Answer:
7.82 s
Explanation:
Given:
Δy = 300 m
v₀ = 0 m/s
a = 9.8 m/s²
Find: t
Δy = v₀ t + ½ at²
(300 m) = (0 m/s) t + ½ (9.8 m/s²) t²
t = 7.82 s
a) The mass of the ship is 
b) The ship has a larger momentum than the shell
Explanation:
a)
The momentum of an object is given by:

where
m is the mass of the object
v is its velocity
For the ship in this problem, we have
is the momentum
is the velocity
Solving for m, we find the mass of the ship:

b)
The momentum of the artillery shell is given by

where
m is its mass
v is its velocity
For the shell in this problem,
m = 1100 kg
v = 1200 m/s
Substituting,

So, we see that the ship has a larger momentum.
Learn more about momentum:
brainly.com/question/7973509
brainly.com/question/6573742
brainly.com/question/2370982
brainly.com/question/9484203
#LearnwithBrainly