Answer:
Latent heatnof fusion = 417.5 J
Explanation:
Specific latent heat of fusion of water is 334kJ.kg-1.
The heat required to melt water when it's ice I called latent heat because there is no temperature change, the only change observed is change in physical structure.
The amount of heat required to change 1 kg of solid to its liquid state (at its melting point) at atmospheric pressure is called Latent heat of Fusion.
Latent heat = ML
Latent heat= 1.25 kg * 334kJ.kg-1
Latent heat = 1.25*334 *(J/kg)*kg
Latent heat = 417.5 J
Answer:
65.87 s
Explanation:
For the first time,
Applying
v² = u²+2as.............. Equation 1
Where v = final velocity, u = initial velocity, a = acceleration, s = distance
From the question,
Given: u = 0 m/s (from rest), a = 1.99 m/s², s = 60 m
Substitute these values into equation 1
v² = 0²+2(1.99)(60)
v² = 238.8
v = √238.8
v = 15.45 m/s
Therefore, time taken for the first 60 m is
t = (v-u)/a............ Equation 2
t = (15.45-0)/1.99
t = 7.77 s
For the final 40 meter,
t = (v-u)/a
Given: v = 0 m/s(decelerates), u = 15.45 m/s, a = -0.266 m/s²
Substitute into the equation above
t = (0-15.45)/-0.266
t = 58.1 seconds
Hence total time taken to cover the distance
T = 7.77+58.1
T = 65.87 s
According to the conservation of mechanical energy, the kinetic energy just before the ball strikes the ground is equal to the potential energy just before it fell.
Therefore, we can say KE = PE
We know that PE = m·g·h
Which means KE = m·g·h
We can solve for h:
h = KE / m·g
= 20 / (0.15 · 9.8)
= 13.6m
The correct answer is: the ball has fallen from a height of 13.6m.
Answer:
270 m
Explanation:
Given:
v₀ = 63 m/s
a = 2.8 m/s²
t = 4.0 s
Find: Δx
Δx = v₀ t + ½ at²
Δx = (63 m/s) (4.0 s) + ½ (2.8 m/s²) (4.0 s)²
Δx = 274.4 m
Rounded to two significant figures, the displacement is 270 meters.
<u>Answer:</u>
Adaption to stress occurs in three stages: alarm, fight or flight, exhaustion.
<u>Explanation:</u>
According to the general adaptation syndrome theory proposed by Hans Selye, the adaption to stress occurs in three stages which are:
1. alarm
2. fight or flight
3. exhaustion
This is a process which comprises of three stages that describes the physiological changes which a body undergoes when in stress (an emotional, mental and physical human response to a specific stimulus).