The job outlook for physical therapists<u> "will improve over time".</u>
Physical therapists, help harmed or sick individuals enhance their development and deal with their agony. These therapists are frequently an imperative piece of the restoration, treatment, and counteractive action of patients with unending conditions, ailments, or wounds.
Physical therapists commonly work in private workplaces and centers, clinics, patients' homes, and nursing homes. They invest quite a bit of their energy in their feet, effectively working with patients.
The question is incomplete. The complete question is :
A common "rule of thumb" for many reactions around room temperature is that the rate will double for each ten degree increase in temperature. Does the reaction you have studied seem to obey this rule? (Hint: Use your activation energy to calculate the ratio of rate constants at 300 and 310 Kelvin.)
Solutions :
If we consider the activation energy to be constant for the increase in 10 K temperature. (i.e. 300 K → 310 K), then the rate of the reaction will increase. This happens because of the change in the rate constant that leads to the change in overall rate of reaction.
Let's take :


The rate constant =
respectively.
The activation energy and the Arhenius factor is same.
So by the arhenius equation,
and 




Given,
J/mol
R = 8.314 J/mol/K





∴ 
So, no this reaction does not seem to follow the thumb rule as its activation energy is very low.
Answer:
gold and copper
Explanation:
but I think there is 1 more
Answer:
Explanation:
H2SO4 let S be x
2(1) + x + 4(-2) = 0
2 + x - 8 = 0
x - 6 = 0
x = 6
For H2S7O8 let S be x
2(1) + 7(x) + 8(-2) = 0
2 + 7x - 16 = 0
7x - 14 = 0
7x = 14
x = 14/7
x = 2
:- H2SO4 as the larger percentage
Answer:
Total percent of magnesium in sample = 25.5%
Explanation:
Given:
Mass of magnesium = 24 gram
Mass of chlorine = 70 gram
Find:
Total percent of magnesium in sample = ?
Computation:
Total mass of sample = Mass of magnesium + Mass of chlorine
Total mass of sample = 24 gram + 70 gram
Total mass of sample = 94 gram
Total percent of magnesium in sample = [Mass of magnesium / Total mass of sample]100
Total percent of magnesium in sample = [24/94]100
Total percent of magnesium in sample = [0.255]100
Total percent of magnesium in sample = 25.5%