Answer:
-490.7 K
Explanation:
Given:
[Ni^2+]= 0.4 M
[Pb^2+]=0.002 M
∆V= -0.012 V
VNi= -0.250V
VPb= -0.126V
F= 96500 C
R= 8.314 JK-1 mol-1
n= 2
From
T= -nF/R [∆V-(VNi-VPb)/ln [Pb2+]/[Ni2+]]
T= 2(96500)/8.314[ (-0.012) -(-0.250) - (-0.126))/ln[0.002]/[0.4]
T= 23213.856(0.112/(-5.298))
T= -490.7 K
B. Mn + NiBr₂ → Ni + MnBr₂
Explanation:
The reaction that can be predicted of all is Mn + NiBr₂ → Ni + MnBr₂.
The activity series is used to predict the products of single displacement reactions.
The series ranks metals in order of their reactivity. Those higher up in the series are highly reactive metals. Those at the bottom are slightly to non-reactive metals.
For a single displacement reaction to occur, a metal higher up in the activity series displaces one that is lower in the series.
Reaction A will not occur, Ba is higher in the series
Reaction C will not occur, Pt and Au are unreactive
Reaction D will not occur as Zn is lower in the series
Mn is higher in the reactivity series and it will displace Ni from the solution.
Learn more:
Synthesis reaction brainly.com/question/4216541
#learnwithBrainly
<h3>
Answer:</h3>
3CaCl₂ + 2Na₃PO₄→ Ca₃(PO₄)₂ + 6NaCl
<h3>
Explanation:</h3>
We are given the Equation;
CaCl₂ + Na₃PO₄→ Ca₃(PO₄)₂ + NaCl
Assuming the question requires us to balance the equation;
- A balanced chemical equation is one that has equal number of atoms of each element on both sides of the equation.
- Balancing chemical equations ensures that they obey the law of conservation of mass in chemical equations.
- According to the law of conservation of mass in chemical equation, the mass of the reactants should always be equal to the mass of the products.
- Balancing chemical equations involves putting appropriate coefficients on the reactants and products.
In this case;
- To balance the equation we are going to put the coefficients 3, 2, 1, and 6.
- Therefore; the balanced equation will be;
3CaCl₂ + 2Na₃PO₄→ Ca₃(PO₄)₂ + 6NaCl
H. using a pulley system can reduce the load force, over a greater distance.<span />
Answer:
Theoretical yield of the reaction = 34 g
Excess reactant is hydrogen
Limiting reactant is nitrogen
Explanation:
Given there is 100 g of nitrogen and 100 g of hydrogen
Number of moles of nitrogen = 100 ÷ 28 = 3·57
Number of moles of hydrogen = 100 ÷ 2 = 50
Reaction between nitrogen and hydrogen yields ammonia according to the following chemical equation
N2 + 3H2 → 2NH3
From the above chemical equation for every mole of nitrogen that reacts, 3 moles of hydrogen will be required and 2 moles of ammonia will be formed
Now we have 3·57 moles of nitrogen and therefore we require 3 × 3·57 moles of hydrogen
⇒ We require 10·71 moles of hydrogen
But we have 50 moles of hydrogen
∴ Limiting reactant is nitrogen and excess reactant is hydrogen
From the balanced chemical equation the yield will be 2 × 3·57 moles of ammonia
Molecular weight of ammonia = 17 g
∴ Theoretical yield of the reaction = 2 × 3·57 × 17 = 121·38 g