Potential energy is the energy stored. What do u think it is? (I don't really know)
58.7 %
Please correct me if I’m wrong. :)
Answer:
13.5 g
Explanation:
This question is solved easily if we remember that the number of moles is obtained by dividing the mass into the atomic weight or molar mass depending if we are referring to elements or molecules.
Therefore, the mass of aluminum in the reaction will the 0.050 mol Al times the atomic weight of aluminum.
number of moles = n = mass of Al / Atomic Weight Al
⇒ mass Al = n x Atomic Weight Al = 0.050 mol x 27 g mol⁻¹
= 13.5 g
We have three significant figures in 0.050 and therefore we should have three significant figures in our answer.
Answer:
Molar heat of solution of KBr is 20.0kJ/mol
Explanation:
Molar heat of solution is defined as the energy released (negative) or absorbed (Positive) per mole of solute being dissolved in solvent.
The dissolution of KBr is:
KBr → K⁺ + Br⁻
In the calorimeter, the temperature decreases 0.370K, that means the solution absorbes energy in this process. The energy is:
q = 1.36kJK⁻¹ × 0.370K
q = 0.5032kJ
Moles of KBr in 3.00g are:
3.00g × (1mol / 119g) = 0.0252moles
Thus, molar heat of solution of KBr is:
0.5032kJ / 0.0252moles = <em>20.0kJ/mol</em>