Answer:
1. 0.125 mole
2. 42.5 g
3. 0.61 mole
Explanation:
1. Determination of the number of mole of NaOH.
Mass of NaOH = 5 g
Molar mass of NaOH = 23 + 16 + 1
= 40 g/mol
Mole of NaOH =?
Mole = mass /molar mass
Mole of NaOH = 5/40
Mole NaOH = 0.125 mole
2. Determination of the mass of NH₃.
Mole of NH₃ = 2.5 moles
Molar mass of NH₃ = 14 + (3×1)
= 14 + 3
= 17 g/mol
Mass of NH₃ =?
Mass = mole × molar mass
Mass of NH₃ = 2.5 × 17
Mass of NH₃ = 42.5 g
3. Determination of the number of mole of Ca(NO₃)₂.
Mass of Ca(NO₃)₂ = 100 g
Molar mass of Ca(NO₃)₂ = 40 + 2[14 + (3×16)]
= 40 + 2[14 + 48]
= 40 + 2[62]
= 40 + 124
= 164 g/mol
Mole of Ca(NO₃)₂ =?
Mole = mass /molar mass
Mole of Ca(NO₃)₂ = 100 / 164
Mole of Ca(NO₃)₂ = 0.61 mole
<span>Having too much water in the body could cause so much complications; just as having too little can be dangerous. In each of these scenarios the body tries to maintain equilibrium through a process called homeostasis. Homeostasis depends on many variables, such as body temperature and body fluid being kept within certain pre-set limits. The essence of homeostasis is maintain bodily functions and metabolism at equilibrium state. If Loiue takes in so much water in a very hot atmosphere or during summer even though he's not thirsty, his body would have to get rid of the excess water by sweating. On the other, during winter, or in a cold environment Loiue's body would have to get rid of excess water by urinating frequently.</span>
Answer:
This question is incomplete
Explanation:
This question is incomplete but there are two parts to this question that can generally be answered without the missing parts.
(1) If a CO₂ molecule starts out surrounded by other CO₂ molecules, does this influence how quickly it will reach the other side of the leaf?
What controls how quickly a CO₂ molecule/molecules enter into the leaf to the other parts of a leaf is the stomata on the leaf. Stomata are tiny openings on a plant leaf that allows for gaseous exchange (the release of oxygen and the absorption of CO₂) in the leaf.
(2) Collisions influence how molecules move, but do molecules only collide with other molecules of the same substance? NO
One of the kinetic theory of gases states that gases collide with one another and against the walls of the container. <u>It should however be noted that, gas molecules of a particular substance can collide with gas molecules of other substances</u>, so far they are within the same container.

☃️ Chemical formulae ➝ 
<h3>
<u>How to find?</u></h3>
For solving this question, We need to know how to find moles of solution or any substance if a certain weight is given.

<h3>
<u>Solution:</u></h3>
Atomic weight of elements:
Ca = 40
C = 12
O = 16
❍ Molecular weight of 
= 40 + 12 + 3 × 16
= 52 + 48
= 100 g/mol
❍ Given weight: 10 g
Then, no. of moles,
⇛ No. of moles = 10 g / 100 g mol‐¹
⇛ No. of moles = 0.1 moles
☄ No. of moles of Calcium carbonate in that substance = <u>0.1 moles</u>
<u>━━━━━━━━━━━━━━━━━━━━</u>