Answer: The pressure in atmospheres is 0.674 in the container if the temperature remains constant.
Explanation:
Boyle's Law: This law states that pressure is inversely proportional to the volume of the gas at constant temperature and number of moles.
(At constant temperature and number of moles)
where,
= initial pressure of gas = 205 kPa
= final pressure of gas = ?
= initial volume of gas = 4.0 L
= final volume of gas = 12000 ml = 12 L (1L=1000ml)
(1kPa=0.0098atm)
Therefore, the pressure in atmospheres is 0.674 in the container if the temperature remains constant.
<span>To calculate the number of moles of aluminum, sulfur, and oxygen atoms in 4.00 moles of aluminum sulfate, al2(so4)3. We will simply inspect the "number" of aluminum, sulfur, and oxygen atoms available per one mole of the compound. Here we have Al2(SO4)3, which means that for every mole of aluminum sulfate, there are 2 moles of aluminum, 3 (1 times 3) moles of sulfur, and 12 (4x3) moles of oxygen. Since we have four moles of Al2(SO4)3 given, we simply multiply 4 times the moles present per 1 mole of the compound. So we have 4x2 = 8 moles of Al, 4x3 = 12 moles of sulfur, and 4x12 = 48 moles of oxygen.
So the answer is:
8,12,48
</span>
Answer:
<h2>The answer is 334 g</h2>
Explanation:
The mass of a substance when given the density and volume can be found by using the formula
<h3>mass = Density × volume</h3>
From the question
volume of ethanol = 423 cm³
density = 0.789 g/cm³
So we have
mass = 0.789 × 423 = 333.747
We have the final answer as
<h3>334 g</h3>
Hope this helps you