From the absorption spectra of a gas, we can see the amount of thermal energy the gas contains (option D).
<h3>What is the absorption spectra?</h3>
The absorption spectra shows us the energy that is taken in by a gas. We know that when a gas is heated, it absorbs energy which shows up in its absorption spectra.
Thus, from the absorption spectra of a gas, we can see the amount of thermal energy the gas contains.
Learn more about absorption spectra:brainly.com/question/4239971
#SPJ1
Potassium Recipients of massive transfusions may therefore develop electrolyte disturbances, with hypocalcemia, hypomagnesemia, and hyperkalemia most commonly reporte
Molarity is defined as the moles of solute per liter of solution.
. Where M is molarity, n is the number of moles and V is the volume. First we must find the molar mass of
which is 109.98 g/mol


Then we find the molarity using above equation

D - density: 13,534 g/ml
m - mass: 10g
V - volume: ??
_____________
d = m/V
V = m/d
V = 10/13,534
V = 0,7389 ml
:•)
Answer: The concentration of hydrogen ions for this solution is
.
Explanation:
Given: pOH = 11.30
The relation between pH and pOH is as follows.
pH + pOH = 14
pH + 11.30 = 14
pH = 14 - 11.30
= 2.7
Also, pH is the negative logarithm of concentration of hydrogen ions.
![pH = - log [H^{+}]](https://tex.z-dn.net/?f=pH%20%3D%20-%20log%20%5BH%5E%7B%2B%7D%5D)
Substitute the values into above formula as follows.
![pH = -log [H^{+}]\\2.7 = -log [H^{+}]\\conc. of H^{+} = 1.99 \times 10^{-3}](https://tex.z-dn.net/?f=pH%20%3D%20-log%20%5BH%5E%7B%2B%7D%5D%5C%5C2.7%20%3D%20-log%20%5BH%5E%7B%2B%7D%5D%5C%5Cconc.%20of%20H%5E%7B%2B%7D%20%3D%201.99%20%5Ctimes%2010%5E%7B-3%7D)
Thus, we can conclude that the concentration of hydrogen ions for this solution is
.