Answer:
shell and tube type heat exchanger
Explanation:
for evaporation the shell and tube type heat exchanger is best suited.
- in the plate heat exchanger there is gaskets in between every part so this part become weak part in heat echanger and there is possibilities of leakage through this part, there is no such problem in shell and tube type.
- the plate type cant be used when there is high temperature and high pressure drop but shell and tube type can be used
- in evaporation there the liquids change into vapors due to which there is sudden change in pressure and in which plate type is not used because there is chances of leakage
To determine the upper bond
Ec(u) = EmVm + EpVp
Em is the elastic modulus of cobalt.
E₁ is the elastic modulus of the particulate
Vm is the volume fraction of cobalt
Vp is the volume fraction of particulate
substitute
Ec(u) = 200 (Vm) + 700 (Vp)
To determine the lower bound
Ec (l) = EmEp/VmEp+ VpEm
Substitute
Ec (l) = 200(700)/Vm(700) + Vp (200)
Ec (l) = 1400/7Vm+2Vp
Answer: obey the "law of conservation of mass".
_____________________________________
Methane gas and chlorine gas react to form hydrogen chloride gas and carbon tetrachloride gas. What volume of hydrogen chloride would be produced by this reaction if 3.16 L of chlorine were consumed at STP.
Be sure your answer has the correct number of significant digits.
Answer: Thus volume of carbon tetrachloride that would be produced is 0.788 L
Explanation:
According to ideal gas equation:

P = pressure of gas = 1 atm (at STP)
V = Volume of gas = 3.16 L
n = number of moles = ?
R = gas constant =
T =temperature =



According to stoichiometry:
4 moles of chlorine produces = 1 mole of carbon tetrachloride
Thus 0.141 moles of methane produces =
moles of carbon tetrachloride
volume of carbon tetrachloride =
Thus volume of carbon tetrachloride that would be produced is 0.788 L