1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
skad [1K]
3 years ago
12

Which orbit has the highest energy? n = 1 n = 2 n = 3

Physics
1 answer:
PIT_PIT [208]3 years ago
4 0

Answer:

3

Explanation:

The closer an orbit is to the nucleus the fewer energy

You might be interested in
If the velocity of an object is zero, then that object cannot be accelerating. | True or False
valkas [14]

Answer: False

Explanation:

3 0
3 years ago
A 0.400-kg ice puck, moving east with a speed of 5.86 m/s , has a head-on collision with a 0.900-kg puck initially at rest.
andreev551 [17]

Answer:

a) The final speed of the 0.400-kg puck after the collision is 2.254 meters per second, b) The negative sign of the solution found in part a) indicates that 0.400-kg puck is moving westwards, c) The speed of the 0.900-kg puck after the collision is 3.606 meters per second eastwards.

Explanation:

a) Since collision is perfectly elastic and there are no external forces exerted on pucks system, the phenomenon must be modelled after the Principles of Momentum and Energy Conservation. Changes in gravitational potential energy can be neglected. That is:

Momentum

m_{1}\cdot v_{1,o} + m_{2}\cdot v_{2,o} = m_{1}\cdot v_{1,f} + m_{2}\cdot v_{2,f}

Energy

\frac{1}{2}\cdot (m_{1}\cdot v_{1,o}^{2}+ m_{2}\cdot v_{2,o}^{2})=\frac{1}{2}\cdot (m_{1}\cdot v_{1,f}^{2}+ m_{2}\cdot v_{2,f}^{2})

m_{1}\cdot v_{1,o}^{2} + m_{2}\cdot v_{2,o}^{2} = m_{1}\cdot v_{1,f}^{2} + m_{2}\cdot v_{2,f}^{2}

Where:

m_{1}, m_{2} - Masses of the 0.400-kg and 0.900-kg pucks, measured in kilograms.

v_{1,o}, v_{2,o} - Initial speeds of the 0.400-kg and 0.900-kg pucks, measured in meters per second.

v_{1}, v_{2} - Final speeds of the 0.400-kg and 0.900-kg pucks, measured in meters per second.

If m_{1} = 0.400\,kg, m_{2} = 0.900\,kg, v_{1,o} = +5.86\,\frac{m}{s}, v_{2,o} = 0\,\frac{m}{s}, the system of equation is simplified as follows:

2.344\,\frac{kg\cdot m}{s} = 0.4\cdot v_{1,f} + 0.9\cdot v_{2,f}

13.736\,J = 0.4\cdot v_{1,f}^{2}+0.9\cdot v_{2,f}^{2}

Let is clear v_{1,f} in first equation:

0.4\cdot v_{1,f} = 2.344 - 0.9\cdot v_{2,f}

v_{1,f} = 5.86-2.25\cdot v_{2,f}

Now, the same variable is substituted in second equation and resulting expression is simplified and solved afterwards:

13.736 = 0.4\cdot (5.86-2.25\cdot v_{2,f})^{2}+0.9\cdot v_{2,f}^{2}

13.736 = 0.4\cdot (34.340-26.37\cdot v_{2,f}+5.063\cdot v_{2,f}^{2})+0.9\cdot v_{2,f}^{2}

13.736 = 13.736-10.548\cdot v_{2,f} +2.925\cdot v_{2,f}^{2}

2.925\cdot v_{2,f}^{2}-10.548\cdot v_{2,f} = 0

2.925\cdot v_{2,f}\cdot (v_{2,f}-3.606) = 0

There are two solutions:

v_{2,f} = 0\,\frac{m}{s} or v_{2,f} = 3.606\,\frac{m}{s}

The first root coincides with the conditions before collision and the second one represents a physically reasonable solution.

Now, the final speed of the 0.400-kg puck is: (v_{2,f} = 3.606\,\frac{m}{s})

v_{1,f} = 5.86-2.25\cdot (3.606)

v_{1,f} = -2.254\,\frac{m}{s}

The final speed of the 0.400-kg puck after the collision is 2.254 meters per second.

b) The negative sign of the solution found in part a) indicates that 0.400-kg puck is moving westwards.

c) The speed of the 0.900-kg puck after the collision is 3.606 meters per second eastwards.

3 0
3 years ago
Which of these events indicate that a chemical reaction might have occurred?
blagie [28]
Reactions occur when two or more molecules interact and the molecules change. Bonds between atoms are broken and created to form new molecules. That's it.
7 0
3 years ago
In a certain chemical process, a lab technician supplies 292 J of heat to a system. At the same time, 68.0 J of work are done on
vekshin1

Answer:

The increase in the internal energy of the system is 360 Joules.

Explanation:

Given that,

Heat supplied to a system, Q = 292 J

Work done on the system by its surroundings, W = 68 J

We need to find the increase in the internal energy of the system. It can be given by first law of thermodynamics. It is given by :

dE=dQ+dW\\\\dE=292\ J+68\ J\\\\dE=360\ J

So, the increase in the internal energy of the system is 360 Joules. Hence, this is the required solution.

3 0
3 years ago
Two airplanes leave an airport at the same time. The velocity of the first airplane is 730 m/h at a heading of 44.3 ◦ . The velo
Goshia [24]

Answer:

So airplane will be 1324.9453 m apart after 2.9 hour

Explanation:

So if we draw the vectors of a 2d graph we see that the difference in angles is  = 83 - 44.3 = 83-44.3=38.7^{\circ}

Distance traveled by first plane = 730×2.9 = 2117 m

And distance traveled by second plane = 590×2.9 = 1711 m

We represent these distances as two sides of the triangle, and the distance between the planes as the side opposing the angle 38.7.

Using the law of cosine, d^2 representing the distance between the planes, we see that:

d^2=2117^2 + 1711^2 -2\times (2117)\times (1711)cos(38.7)=1755480.2482

d = 1324.9453 m

4 0
3 years ago
Other questions:
  • You are climbing in the High Sierra where you suddenly find yourself at the edge of a fog-shrouded cliff. To find the height of
    6·1 answer
  • Some areas of the Earth receive more solar radiation than others. Which of the following results from the Sun's uneven heating o
    5·1 answer
  • Question 2
    14·1 answer
  • the mass of a brick is 4 kg, find the mass of water displaced by it when completely immersed in water.​
    6·1 answer
  • Which measurement is equivalent to 350 milliliters?
    11·1 answer
  • Draw a picture of an atom.include protons,neutrons, and electrons.
    6·1 answer
  • HELP PLEASE ASAP !!!!Question 5 of 15
    11·2 answers
  • The relationship between the decay constant (λ) and the half-life (t1⁄2) is given by the equation t(1/2) = 0.693/λ. Use the equa
    6·1 answer
  • How does a balanced chemical equation demonstrate the Law of Conservation of Mass?
    6·1 answer
  • The Atwood’s machine shown consists of two blocks of mass m1 and m2 that are connected by a light string that passes over a pull
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!