1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Oliga [24]
2 years ago
15

Careful planning will save time, __________, and energy while ensuring the production of a high quality product.

Engineering
1 answer:
Svet_ta [14]2 years ago
5 0
Juicers nb 345676 at that rate it will be amazing
You might be interested in
Line.
Veronika [31]

Air supplied to a pneumatic system is supplied through the C. Actuator

Explanation

Pneumatic systems are like hydraulic systems, it is just that these systems uses compressed air rather than hydraulic fluid.  Pneumatic systems are used widely across the industries. these pneumatic systems needs a constant supply of compressed air to operate. This is provided by an air compressor. The compressor sucks in air at a very high rate from the environment and stores it in a pressurized tank. the Air is supplied thereafter with the help of a actuator valve that is a more sophisticated form of a valve.

From the above statement it is clear that Air supplied to a pneumatic system is supplied through the  Actuator

7 0
3 years ago
A 200-mm-long strip of metal is stretched in two steps, first to 300 mm and then to 400 mm. Show that the total true strain is t
Neko [114]

Explanation:

For true Strain:

step 1:

E true = Ln(1 + 0.5 ) = 0.40

Step 2:

E true = Ln(1 + 0.33 ) = 0.29

By single step process:

E true = Ln(1 + 1 ) = 0.69

total strain of step process = 0.40 + 0.29 = 0.69 units

SO TRUE STRAIN IS ADDITIVE.

4 0
2 years ago
Using the results of the Arrhenius analysis (Ea=93.1kJ/molEa=93.1kJ/mol and A=4.36×1011M⋅s−1A=4.36×1011M⋅s−1), predict the rate
uysha [10]

Answer:

k = 4.21 * 10⁻³(L/(mol.s))

Explanation:

We know that

k = Ae^{-E/RT} ------------------- euqation (1)

K= rate constant;

A = frequency factor = 4.36 10^11 M⁻¹s⁻¹;

E = activation energy = 93.1kJ/mol;

R= ideal gas constant = 8.314 J/mol.K;

T= temperature = 332 K;

Put values in equation 1.

k = 4.36*10¹¹(M⁻¹s⁻¹)e^{[(-93.1*10^3)(J/mol)]/[(8.314)(J/mol.K)(332K)}

k = 4.2154 * 10⁻³(M⁻¹s⁻¹)

here M =mol/L

k = 4.21 * 10⁻³((mol/L)⁻¹s⁻¹)

 or

k = 4.21 * 10⁻³((L/mol)s⁻¹)

or

k = 4.21 * 10⁻³(L/(mol.s))

3 0
3 years ago
Briefly discuss if it would be better to operate with pumps in parallel or series and how your answer would change as the steepn
Aleksandr [31]

Answer:

1) In series, the combined head will move from point 1 to point 2 in theory. However, practically speaking, the combined head and flow rate will move along the system curve to point 3.

2) In parallel, the combined head and volume flow will move along the system curve from point 1 to point 3.

Explanation:

1) Pump in series:

When two or more pumps are connected in series, their resulting pump performance curve will be obtained by adding their respective heads at the same flow rate as shown in the first diagram attached.

In the first diagram, we have 3 curves namely:

- system curve

- single pump curve

- 2 pump in series curve

Also, we have points labeled 1, 2 and 3.

- Point 1 represents the point that the system operates with one pump running.

- Point 2 represents the point where the head of two identical pumps connected in series is twice the head of a single pump flowing at the same rate.

- Point 3 is the point where the system is operating when both pumps are running.

Now, since the flowrate is constant, the combined head will move from point 1 to point 2 in theory. However, practically speaking, the combined head and flow rate will move along the system curve to point 3.

2) Pump in parallel:

When two or more pumps are connected in parallel, their resulting pump performance curve will be obtained by adding their respective flow rates at same head as shown in the second diagram attached.

In the second diagram, we have 3 curves namely:

- system curve

- single pump curve

- 2 pump in series curve

Also, we have points labeled 1, 2 and 3

- Point 1 represents the point that the system operates with one pump running.

- Point 2 represents the point where the flow rate of two identical pumps connected in series is twice the flow rate of a single pump.

- Point 3 is the point where the system is operating when both pumps are running.

In this case, the combined head and volume flow will move along the system curve from point 1 to point 3.

5 0
2 years ago
A/an_ Oscilloscope uses a cathode ray tube and displays all voltages.
MrRa [10]

Answer:

I think it’s B, digital

Explanation:

3 0
3 years ago
Other questions:
  • A forklift raises a 90.5 kg crate 1.80 m. (a) Showing all your work and using unity conversion ratios, calculate the work done b
    14·2 answers
  • From the following numbered list of characteristics, decide which pertain to (a) precipitation hardening, and which are displaye
    12·1 answer
  • When choosing a respirator for your job, you must conduct a _____ test.
    15·1 answer
  • A decorative fountain was built so that water will rise to a hieght of 8 feet above the exit of the pipe. the pipe is 3/4 diamet
    5·1 answer
  • java Write a program that simulates tossing a coin. Prompt the user for how many times to toss the coin. Code a method with no p
    10·2 answers
  • You are considering purchasing a compact washing machine, and you have the following information: The Energy Guide claims an est
    8·1 answer
  • When should u check ur review mirror
    5·1 answer
  • I have a question for you guys
    13·2 answers
  • What effect will increasing numbers of high-profile green building projects likely have on thinking about building?
    5·1 answer
  • Explain with examples:<br> What are the reasons of a successful and unsuccessful software project?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!