Answer:
a) [volts] = [N m / C],
b) The lines or surface that has the same potential are called equipotential
c) the equipotential lines must also be perpendicular to the electric field lines
Explanation:
a) find the units of the volt
the electric potential energy is
V = k q / r
V = [N m² / C²] C / m
V = [N m / C]
The electric potential is defined as
V = E .s
V = [N / C] [m]
V = [N m / C] = [volt]
we see that in the two expressions the same result is obtained therefore the volt is
[volts] = [N m / C]
b) The lines or surface that has the same potential are called equipotential surfaces, the great utility of these lines or surfaces is that a face can be displaced on it without doing work.
c) The electric potential is defined as the gradient of the electric field
v =
therefore the equipotential lines must also be perpendicular to the electric field lines
Answer:
5 ms-2
Explanation:
F = ma
F = 100N
m = 20kg ( you should make sure the unit is kg before you answer the question)
100 = 20a
a = 100÷ 20
a = 5 ms-2
Answer:
M V R = constant angular momentum is constant because no forces act in the direction of V
Since M (mass) = constant
V R = constant
The force is directed along the gravitational force vector (towards the center of rotation)
To convert from newtons to kg in earth gravity, simply divide by 10 (or 9.8 if being specific). 645N = ~64.5kg
Answer:
"The lowest energy configuration for an atom is the one having the maximum number of unpaired electrons allowed by thePauli principle in a particular set of degenerate orbitals" is known as Hund's rule.
Explanation:
Pauli's Exclusion principle states that "two or more electrons can not have the same values of the set of all quantum numbers in an atom or a molecule".
So, the given statement <em>is not</em> Pauli's Exclusion principle.
Hund's rule states that the lowest energy configuration of an atom is that one in which the maximum number of parallel spins of the electrons are present.
The given statement is "The lowest energy configuration for an atom is the one having the maximum number of unpaired electrons allowed by the Pauli principle in a particular set of degenerate orbitals", which is same as the Hund's rule.
Thus, the given statement is Hund' rule.
Heisenberg's uncertainty principle states that the momentum and position of an object can not be measured exactly at the same time.
So, the given statement <em>is not</em> Heisenberg's uncertainty principle.
Aufbau principle tells about the filling of the electrons in subshells of an atom. Therefore, the given statement <em>is not </em>Aufbau principle.