Answer:
kinetic friction may be greater than 400 N or smaller than 400 N
Explanation:
As we know that maximum value of static friction on the rough surface is known as limiting friction and the formula of this limiting friction is known as

now when object is sliding on the rough surface then the friction force on that surface is known as kinetic friction and the formula of kinetic friction is known as

now we know that

so here value of limiting static friction force is always more than kinetic friction
also we know that
initially when body is at rest then static friction value will lie from 0 N to maximum limiting friction
and hence kinetic friction may be greater than static friction or if the static friction is maximum limiting friction then kinetic friction is smaller than static friction
so kinetic friction may be greater than 400 N or smaller than 400 N
Answer:
1 D ,2 B ,5 C ,3 A ,4 E i dont know why you gotta have 20 words to answer it but yeah
Answer: false
Explanation: the longer the period, the less thef= frequency
Answer:
The answer is "Choice C ".
Explanation:
The relationship between the E and V can be defined as follows:

Let,

When E=0

v is a constant value
Therefore, In the electric potential in a region is a constant value then the electric-field must be into zero that is everywhere in the given region, that's why in this question the "choice c" is correct.
Answer:
v = 344.1 m / s
d = 1720.5 m
Explanation:
For this problem we must calculate the speed of sound in air at 22ºC
v = 331 RA (1+ T / 273)
we calculate
v = 331 RA (1 + 22/273)
v = 344.1 m / s
the speed of the wave is constant,
v = d / t
d = v t
we calculate
d = 344.1 5
d = 1720.5 m