<span>the behavior of the above pair of substances</span> is soluble
Energy levels inside an atom are the specific energies that electrons can have when energy occupies specific orbitals. Electrons can be excited to higher energy levels by absorbing energy from the surroundings, an equivalent light is emitted when an electron returns from a high energy state to a lower one. Representation of this diagrammatic is known as the energy level diagram.
Scene B depicts chemical change in matter at atomic change.
Composition distinguishes a chemical reaction from a physical reaction. In a chemical process, the makeup of the components changes; in a physical change, the appearance, smell, or straightforward exhibition of a sample of matter changes without changing its composition. Despite the fact that we refer to them as physical "reactions," nothing is actually changing. A change in the substance in question's elemental composition is necessary for a reaction to occur. Therefore, from now on, we will simply refer to bodily "reactions" as physical changes.
Learn more about Chemical changes here-
brainly.com/question/23693316
#SPJ4
Answer : The value of rate of reaction is 
Explanation :
Rate law : It is defined as the expression which expresses the rate of the reaction in terms of molar concentration of the reactants with each term raised to the power their stoichiometric coefficient of that reactant in the balanced chemical equation.
The given chemical equation is:

Rate law expression for the reaction is:
![\text{Rate}=k[NO]^a[O_2]^b](https://tex.z-dn.net/?f=%5Ctext%7BRate%7D%3Dk%5BNO%5D%5Ea%5BO_2%5D%5Eb)
As per question,
a = order with respect to
= 2
b = order with respect to
= 1
Thus, the rate law becomes:
![\text{Rate}=k[NO]^2[O_2]^1](https://tex.z-dn.net/?f=%5Ctext%7BRate%7D%3Dk%5BNO%5D%5E2%5BO_2%5D%5E1)
Now, calculating the value of rate of reaction by using the rate law expression.
Given :
k = rate constant = 
[NO] = concentration of NO = 
= concentration of
= 
Now put all the given values in the above expression, we get:


Hence, the value of rate of reaction is 