solution:
The quoted atomic mass on the Periodic Table is the WEIGHTED average of the individual isotopic masses. The higher the isotopic percentage, the MORE that isotope will contribute to the isotopic mass. For this reason, most masses that are quoted on the Table are non-integral.
By way of example we could look to the hydrogen atom. The VAST majority of hydrogen atoms (in this universe) are the protium isotope. i.e. 1H, whose nuclei contain JUST the defining proton. There is a smaller percentage (>1%) of hydrogen atoms WITH one NEUTRON in their nuclei to give the deuterium isotope. i.e. 2H, and because this is relatively cheap, and easily incorporated into a molecule, deuterium labelling is routinely used in analysis.
And there is even a smaller percentage of hydrogen atoms with TWO NEUTRONS in their nuclei, to give the tritium isotope. i.e. 3H. The weighted average of the isotopic percentages gives 
Answer:
The uranium in the sample of the compound is radioactive
Explanation:
Some atoms can split on their own. Some split when bombarded by energetic particles. Such atoms are said to be radioactive.
Radioactivity is borne out of the drive of an atom to reach stabillity. Every atom have a specific neutron/proton ratio which ensures stability of the nucleus. A nucleus with a stability ratio different from that which makes it stable will become unstable and split into one or more other nuclei with emissons of energetic particles.
Note: neutrons and protons dictates the mass of an atom. They are located in the nucleus which is the site for nuclear radioactive reactions.
1000 mL=1L
25 mL = 0.025 L
125 mL = 0.125 L
M1V1=M2V2
0.15(0.125) = M2(0.025)
0.01875 = M2(0.025)
0.75 = M2
0.75 M
Answer:
16Ag + 2C2 ---> 4 Ag4C
Explanation:
Ag + C2 ----> AgC2
The valence of Ag is one
Valence of Carbon is four
A balanced equation would be
16Ag + 2C2 ---> 4 Ag4C