Given: Mass m = 44 Kg; Velocity v = 10 m/s
Required: Kinetic energy K.E = ?
Formula: K.E = 1/2 mv²
K.E 1/2 (44 Kg)(10 m/s)²
K.E = 2,200 Kg.m²/s²
K.E = 2,200 J Answer is A
Answer:
The second projectile was 1.41 times faster than the first.
Explanation:
In the ballistic pendulum experiment, the speed (v) of the projectile is given by:
<em>where m: is the mass of the projectile, M: is the mass of the pendulum, g: is the gravitational constant and h: is the maximum height of the pendulum. </em>
To know how many times faster was the second projectile than the first, we need to take the ratio for the velocities for the projectiles 2 and 1:
(1)
<em>where m₁ and m₂ are the masses of the projectiles 1 and 2, respectively, and h₁ and h₂ are the maximum height reached by the pendulum by the projectiles 1 and 2, respectively. </em>
Since the projectile 1 has the same mass that the projectile 2, we can simplify equation (1):

Therefore, the second projectile was 1.41 times faster than the first.
I hope it helps you!
Answer: The earth is a noisy place. Seismometers, which measure ground movements to detect earthquakes, volcanic eruptions, and manmade explosives, are constantly recording smaller vibrations caused by ocean waves, rushing rivers, and industrial activity.
Explanation:
Answer:
Explanation:
They need a galvanic difference. Or saying that less technically, they need to have different electron attraction, so that one can collect electrons (oxidation/reduction) and flow current from the other. :)
Answer:
6 m
Explanation:
velocity = wavelength x frequency
444 m/s = wavelength x 74 Hz
444 m/s / 74 Hz = wavelength
wavelength = 6m