The wavenumber and (b) the wavelength of the radiation used by an fm radio transmitter broadcasting at 92. 0 mhz will be 31.25 *
and 0.032 *
m respectively
Forms of electromagnetic radiation like radio waves, light waves or infrared (heat) waves make characteristic patterns as they travel through space. Each wave has a certain shape and length. The distance between peaks (high points) is called wavelength.
Wavenumber, also called wave number, a unit of frequency, often used in atomic, molecular, and nuclear spectroscopy, equal to the true frequency divided by the speed of the wave and thus equal to the number of waves in a unit distance.
wavelength = ?
frequency = 92 m Hz = 92 *
Hz
speed of light = 3 *
m/s
speed of light = frequency * wavelength
wavelength = speed of light / frequency
= 3 *
/ 92 *
= 0.032 *
m
wavenumber = 1 / wavelength
= 1 / 0.032 *
m
= 31.25 *

To learn more about electromagnetic radiation here
brainly.com/question/10759891
#SPJ4
Answer:
(E) a greatly increased number of small particles in Earth’s orbit would result in a blanket of reflections that would make certain valuable telescope observations impossible
Explanation:
The trade is one strong reflection for many weak reflections (and more dangerous near-Earth space travel).
None of the answer choices except the last one has anything to do with the effect of exploding a satellite. When you are arguing that exploding a satellite is ill conceived, you need to address specifically the effects of exploding the satellite.
Question:
A 63.0 kg sprinter starts a race with an acceleration of 4.20m/s square. What is the net external force on him? If the sprinter from the previous problem accelerates at that rate for 20m, and then maintains that velocity for the remainder for the 100-m dash, what will be his time for the race?
Answer:
Time for the race will be t = 9.26 s
Explanation:
Given data:
As the sprinter starts the race so initial velocity = v₁ = 0
Distance = s₁ = 20 m
Acceleration = a = 4.20 ms⁻²
Distance = s₂ = 100 m
We first need to find the final velocity (v₂) of sprinter at the end of the first 20 meters.
Using 3rd equation of motion
(v₂)² - (v₁)² = 2as₁ = 2(4.2)(20)
v₂ = 12.96 ms⁻¹
Time for 20 m distance = t₁ = (v₂ - v ₁)/a
t₁ = 12.96/4.2 = 3.09 s
He ran the rest of the race at this velocity (12.96 m/s). Since has had already covered 20 meters, he has to cover 80 meters more to complete the 100 meter dash. So the time required to cover the 80 meters will be
Time for 100 m distance = t₂ = s₂/v₂
t₂ = 80/12.96 = 6.17 s
Total time = T = t₁ + t₂ = 3.09 + 6.17 = 9.26 s
T = 9.26 s
Answer: Magnetizim
Explanation: Magnetic Atoms collide creating magnetizim