Answer:
T = 2010 N
Explanation:
m = mass of the uniform beam = 150 kg
Force of gravity acting on the beam at its center is given as
W = mg
W = 150 x 9.8
W = 1470 N
T = Tension force in the wire
θ = angle made by the wire with the horizontal = 47° deg
L = length of the beam
From the figure,
AC = L
BC = L/2
From the figure, using equilibrium of torque about point C
T (AC) Sin47 = W (BC)
T L Sin47 = W (L/2)
T Sin47 = W/2
T Sin47 = 1470
T = 2010 N
Answer:
1.5 m/s
Explanation:
Conservation of momentum means the momentum of the system before the collision is the same as after.
The before, after momentum of each ball is ...
5 kg ball: (5 kg)(2 m/s), (5 kg)(-1 m/s)
10 kg ball: (10 kg)(0 m/s), (10 kg)(v)
The sum of the "before" products is the same as the sum of the "after" products:
(5 kg)(2 m/s) +0 = (5 kg)(-1 m/s) +(10 kg)v
(10 +5) kg·m/s = (10 kg)·v . . . . . add (5 kg)(1 m/s) to both sides
v = (15 kg·m/s)/(10 kg) = 1.5 m/s
The speed of the larger ball will be 1.5 m/s. Its direction of motion will be the opposite of that of the 5 kg ball after the collision.
Answer:
I guess sound wave I s gonna be d right answer
Explanation:
cos sound doesnt has weight and occupies space
Explanation:
Let us assume that Z is the energy transported across an area of
per hour by an electromagnetic wave with an r.m.s speed of 21.5 V/m.
Therefore, first we will calculate the current as follows.
I =
= 
= 0.441 J
Therefore, we can conclude that 0.441 J energy is transported across a given EM wave.
The velocity of the red cart after the collision is 2 m/s
From the law of conservation of momentum, initial momentum of system = final momentum of system.
m₁v₁ + m₂v₂ = m₁v₃ + m₂v₄ where m₁ = mass of red cart = 4 kg, v₁ = velocity of red cart before collision = + 4 m/s, v₃ = velocity of red cart after collision, m₂ = mass of blue cart = 1 kg, v₂ = velocity of blue cart before collision = 0 m/s (since it is initially at rest) and v₄ = velocity of blue cart after collision = + 8 m/s.
Substituting the values of the variables into the equation, we have,
m₁v₁ + m₂v₂ = m₁v₃ + m₂v₄
4 kg × 4 m/s + 1 kg × 0 m/s = 4v₃ + 1 kg × 8 m/s
16 kgm/s + 0 kgm/s = 4v₃ + 8 kgm/s
16 kgm/s = 4v₃ + 8 kgm/s
16 kgm/s - 8 kgm/s = (4 kg)v₃
(4 kg)v₃ = 8 kgm/s
Divide both sides by 4 kg, we have
v₃ = 8 kgm/s ÷ 4 kg
v₃ = 2 m/s
The velocity of the red cart after the collision is 2 m/s.
Learn more about conservation of momentum here:
brainly.com/question/7538238