Answer:
15.Radiowave
16.laser is device that generates an intense beam of other electromagnetic radiation by emission of photons from excited atoms.
17.this is a laboratory instrument commonly used to display and analyse the waveformof electronic signals.
19. this is a space entirely devoid of matter.
From context clues, I believe the correct answer is B) Red Dwarf!
If the force were constant or increasing, we could guess that the speed of the sardines is increasing. Since the force is decreasing but staying in contact with the can, we know that the can is slowing down, so there must be friction involved.
Work is the integral of (force x distance) over the distance, which is just the area under the distance/force graph.
The integral of exp(-8x) dx that we need is (-1/8)exp(-8x) evaluated from 0.47 to 1.20 .
I get 0.00291 of a Joule ... seems like a very suspicious solution, but for an exponential integral at a cost of 5 measly points, what can you expect.
On the other hand, it's not really too unreasonable. The force is only 0.023 Newton at the beginning, and 0.000067 newton at the end, and the distance is only about 0.7 meter, so there certainly isn't a lot of work going on.
The main question we're left with after all of this is: Why sardines ? ?
Answer:
The correct answer is c
Explanation:
Flow is defined by
Ф = B . A
bold letters indicate vectors.
The magnetic field is directed to the y axis, The area of the coil is represented by a vector normal to the plane of the coil, so to have a flux
i.i = j.j = k.k = 1
and the tori scalar products are zero
a) If the coil must be in the xy plane so that its normal vector is in the Z axis, so there is no flux
b) if the coil is in the plane yz the normal veto is in the x axis, so the flux is zero
C) If the coil is in XZ, the normal vector points in the y direction, usually the scalar product is one and there is a flux in this configuration
The correct answer is c
Answer:
Inclined plane.
Explanation:
Geometrically, a screw is a narrow inclined plane that is wrapped around a cylinder. Like the other simple machines a screw can amplify force; a small rotational force (torque) on the shaft can exert a large axial force on a load.
A screw is a cylinder with a head (solid top) at one end and a pointed tip (like a nail) at the other end.
The mechanical advantage of the screw depends on the space between the threads and the length (and thickness) of the screw. The closer the threads are, the greater the mechanical advantage. It is easier to drive a screw into an object if the thread spacing is smaller.