Answer:
Coefficient in front of the
in the balanced equation - 1
Explanation:
The unbalanced Chemical equation is shown below as:-
On the left hand side,
There are 1 boron atom and 3 fluorine atoms and 1 sodium and hydrogen atoms.
On the right hand side,
There are 2 boron atoms and 6 hydrogen atoms and 1 sodium and fluorine atoms.
Thus,
leftside,
must be multiplied by 2 to balance boron and right side,
must be multiplied by 6 to balance fluorine. Left side,
must be multiplied by 6 to balance sodium and hydrogen atoms.
Thus, the balanced reaction is:-
<u>Coefficient in front of the
in the balanced equation - 1</u>
Answer : The specific heat of metal is
.
Explanation :
In this problem we assumed that heat given by the hot body is equal to the heat taken by the cold body.


where,
= specific heat of metal = ?
= specific heat of water = 
= mass of metal = 129.00 g
= mass of water = 45.00 g
= final temperature = 
= initial temperature of metal = 
= initial temperature of water = 
Now put all the given values in the above formula, we get


Therefore, the specific heat of metal is
.
From the balanced equation 2KClO3 → 2KCl + 3O2, the coefficients are the following:
coefficient 2 in front of potassium chlorate KClO3
coefficient 2 in front of potassium chloride KCl
coefficient 3 in front of oxygen molecule O2
We got this balanced equation by identifying the number of atoms of each element that we have in the given equation KClO3 → KCl + O2.
Looking at the subscripts of each atom on the reactant side and on the product side, we have
KClO3 → KCl + O2
K=1 K=1
Cl=1 Cl=1
O=3 O=2
We can see that the oxygens are not balanced. We add a coefficient 2 to the 3 oxygen atoms on the left side and another coefficient 3 to the 2 oxygen
atoms on the right side to balance the oxygens:
2KClO3 → KCl + 3O2
The coefficient 2 in front of potassium chlorate KClO3 multiplied by the subscript 3 of the oxygen atoms on the left side indicates 6 oxygen atoms just as the coefficient 3 multiplied by the subscript 2 on the right side indicates 6 oxygen atoms.
The number of potassium K atoms and chloride Cl atoms have changed as well:
2KClO3 → KCl + 3O2
K=2 K=1
Cl=2 Cl=1
O=6 O=6
We now have two potassium K atoms and two chloride Cl atoms on the reactant side, so we add a coefficient 2 to the potassium chloride KCl on the product side:
2KClO3 → 2KCl + 3O2, which is our final balanced equation.
K=2 K=2
Cl=2 Cl=2
O=6 O=6
The potassium, chlorine, and oxygen atoms are now balanced.
Two non-polar molecules are most likely to interact by
induced dipole-induced dipole interaction.
Non-polar substances do not have a permanently established charge distribution due to similar electron affinities of the atoms that are present. Moreover, due to the absence of a polar hydrogen, they cannot exhibit hydrogen bonding. They interact with one another by induced dipole-induced dipole interactions which arise from the molecules of the substances coming into close vicinity of one another.