One claim that supports one law of thermodynamics in photosynthesis is that energy is conserved, but the form of energy changes (Law 1).
<h3>What is photosynthesis?</h3>
Photosynthesis is a process done by plants and other organisms to obtain energy. This process implies a set of reactions that aim at converting light energy into chemical energy the organisms can use.
<h3>How is photosynthesis related to thermodynamics?</h3>
One way photosynthesis supports the laws of thermodynamics is through the first law that establishes energy is conserved, but the form of the energy can change.
This is because, in photosynthesis, the initial solar energy is transformed into chemical energy by storing the energy in carbon-hydrogen chemical bonds. This means the form of energy has changed but the energy is preserved.
Note: This question is incomplete because the graph is not given; due to this, I answered it based on general knowledge.
Learn more about photosynthesis in: brainly.com/question/1388366
Answer : The O-O bond in
will be longer than the O-O bond in
.
Explanation :
In the
, the two oxygen atoms are bonded by the single bond and in
, the two oxygen atoms are bonded by the double bond.
As we know, the bond strength of double bond is greater than the single bond.
And the relation between the bond strength and bond length is,

That means the higher the strength, the shorter will be the bond length.
Hence, the bond length of single bond will be longer than the double bond.
The structure of given molecule is shown below.
<span>an oxide of iron, magnesium, aluminum, and chromium</span>
I'd say it's partially dissociating into products