Answer:
To understand the utility in sequence comparison and in the search for proteins that have a common evolutionary origin, you need to be clear about some concepts about how to evolve proteins. The idea that is accepted is that throughout the evolution some species are giving rise to new ones. Behind this is the genetic variation of organisms, that is, the evolution of genomes and their genes, as well as the proteins encoded by them.
Explanation:
Three ways can be distinguished by which genes evolve, and by proteins: mutation, duplication and shuffling of domains. When differences between homologous protein sequences are observed, these differences change to do with the way of life of the organism, an example of this, bacteria that live in hot springs at very high temperatures have proteins with a very high denaturation temperature, and these proteins are usually richer in cysteines. On the other hand, the fact that in positions of the sequences they remain unchanged (preserved positions), means that these have a special importance for the maintenance of the structure or function of the protein and its modification has not been tolerated throughout of evolution
Answer:
20.9%
Explanation:
- The percentage by mass of solution is given by dividing the mass of solute in grams by the mass of solution in grams then multiplying it by 100%.
% Mass of solution = mass of solute/mass of solution × 100%
= (27.0 g/ 129.0 g) × 100%
= 20.93%
= 20.9%
Answer:
7.640 kg
Explanation:
Step 1: Write the balanced complete combustion equation for ethanol
C₂H₆O + 3 O₂ ⇒ 2 CO₂ + 3 H₂O
Step 2: Calculate the moles corresponding to 4 kg (4000 g) of C₂H₆O
The molar mass of C₂H₆O is 46.07 g/mol.
4000 g × 1 mol/46.07 g = 86.82 mol
Step 3: Calculate the moles of CO₂ released
86.82 mol C₂H₆O × 2 mol CO₂/1 mol C₂H₆O = 173.6 mol CO₂
Step 4: Calculate the mass corresponding to 173.6 moles of CO₂
The molar mass of CO₂ is 44.01 g/mol.
173.6 mol × 44.01 g/mol = 7640 g = 7.640 kg
<h3>
flammable liquids will catch on fire and burn easily at normal working temperatures. Combustible liquids have the ability to burn at temperatures that are usually above working temperatures.</h3>
<em>Hope this helped! :)</em>
I think the correct answer would be spontaneous oxidation-reduction reaction. The type of reaction in a voltaic cell is best described as a spontaneous oxidation-reduction reaction. A voltaic cell uses the energy from the chemical reaction involved to produce electrical energy. Hope this answers the question.