Answer:
increase
Explanation:
because in endothermic reaction heat is absorbed
Answer:
Sorry but i can't help
Explanation:
i need to really finesh s
Answer:
311.25k
Explanation:
The question assumes heat is not lost to the surroundings, therefore
heat emitted from hotter sample (
)= heat absorbed by the less hotter sample(
)
The relationship between heat (q), mass (m) and temperature (t) is 
where c is specific heat capacity,
temperature change.
= 
equating both heat emitted and absorb


where the values with subset 1 are the values of the hotter sample of water and the values with subset 2 are the values of the less hot sample of water.
C will cancel out since both are water and they have the same specific heat capacity.
so we have

where m1 = 50g, t 1initial = 330, m2 = 30g, t2 initial = 280,t final (final temperature of the mixture) = ?
-50 * (
- 330) = 30 * (
- 280)
-50
+ 16500 = 30
- 8400
80
= 16500+8400
80
= 24900
= 24900/80 = 311.25k
Answer:
45.8 mL
Explanation:
If all variables are held constant, the new volume can be found using the Boyle's Law equation. The equation looks like this:
P₁V₁ = P₂V₂
In this equation, "P₁" and "V₁" represent the initial pressure and volume. "P₂" and "V₂" represent the final pressure and volume. You can find the new volume by plugging the given values into the equation and simplifying.
P₁ = 3.1 atm P₂ = 10.5 atm
V₁ = 155 mL V₂ = ? mL
P₁V₁ = P₂V₂ <----- Boyle's Law equation
(3.1 atm)(155 mL) = (10.5 atm)V₂ <----- Insert values
480.5 = (10.5 atm)V₂ <----- Multiply 3.1 and 155
45.8 = V₂ <----- Divide both sides by 10.5
<span>Because aluminium oxide is strong and forms a coating over itself, but iron oxide (rust) will flake away.</span>