Answer:
C. 170 g.
Explanation:
multiply given moles by the molar mass of ammonia.
Answer:
The probability of Janie to have blonde hair would be a slim 13% to a 34%.
Explanation:
Not 100% sure but best estimation I can come up with.
Let the ratio of grams of hydrogen per gram of carbon in methane be M, we know that:
M = 0.3357 g / 1 g
Next, lets represent the grams of hydrogen per gram of carbon in ethane be E. The final piece of information we have is:
M / E = 4/3
If we cross multiply,
3M = 4E
Now, substituting the value of M from earlier and solving for E,
E = (3 * 0.3357) / 4
E = 0.2518
There are 0.2518 grams of hydrogen per gram of carbon in ethane.
Answer: I'm sorry, but we can't see the image from NASA
Explanation:
Answer:
The mass of tin is 164 grams
Explanation:
Step 1: Data given
Specific heat heat of tin = 0.222 J/g°C
The initial temeprature of tin = 80.0 °C
Mass of water = 100.0 grams
The specific heat of water = 4.184 J/g°C
Initial temperature = 30.0 °C
The final temperature = 34.0 °C
Step 2: Calculate the mass of tin
Heat lost = heat gained
Qlost = -Qgained
Qtin = -Qwater
Q = m*c*ΔT
m(tin)*c(tin)*ΔT(tin) = -m(water)*c(water)*ΔT(water)
⇒with m(tin) = the mass of tin = TO BE DETERMINED
⇒with c(tin) = the specific heat of tin = 0.222J/g°C
⇒with ΔT(tin) = the change of temperature of tin = T2 - T1 = 34.0°C - 80.0°C = -46.0°C
⇒with m(water) = the mass of water = 100.0 grams
⇒with c(water) = the specific heat of water = 4.184 J/g°C
⇒with ΔT(water) = the change of temperature of water = T2 - T1 = 34.0° C - 30.0 °C = 4.0 °C
m(tin) * 0.222 J/g°C * -46.0 °C = -100.0g* 4.184 J/g°C * 4.0 °C
m(tin) = 163.9 grams ≈ 164 grams
The mass of tin is 164 grams