High school???
No way
It's work.
Answer:
(a) the runner's kinetic energy at the given instant is 308 J
(b) the kinetic energy increased by a factor of 4.
Explanation:
Given;
mass of the runner, m = 64.1 kg
speed of the runner, u = 3.10 m/s
(a) the kinetic energy of the runner at this instant is calculated as;

(b) when the runner doubles his speed, his final kinetic energy is calculated as;

the change in the kinetic energy is calculated as;

Thus, the kinetic energy increased by a factor of 4.
Answer:
3743.489 kg
Explanation:
F_g = 591 N
G = 6.674x10^-11 constant of gravity
m_1 = 95 kg
m_2 = unknown
r = 4990*1000 =
F_g = G[(m_1*m_2)/r^2]
591 N = 6.674x10^-11[(95*m_2)/4990^2]
8.855 = [(95*m_2)/4990^2]
355631.472 = 95*m_2
m_2 = 3743.489 kg
Potential energy is stored an object , where as kinetic energy is energy in a object during movement . Potential energy is what kinetic energy transfers into
Take the moment car A starts to accelerate to be the origin. Then car A has position at time <em>t</em>
<em>x</em> = (20.0 m/s) <em>t</em> + 1/2 (2.10 m/s²) <em>t</em>²
and car B's position is given by
<em>x</em> = 300 m + (27.0 m/s) <em>t</em>
<em />
Car A overtakes car B at the moment their positions are equal:
(20.0 m/s) <em>t</em> + 1/2 (2.10 m/s²) <em>t</em>² = 300 m + (27.0 m/s) <em>t</em>
300 m + (7.00 m/s) <em>t</em> - (1.05 m/s²) <em>t</em>² = 0
==> <em>t</em> ≈ 20.6 s