m = Mass of the refrigerator to be moved to third floor = 136 kg
g = Acceleration due to gravity by earth on the refrigerator being moved = 9.8 m/s²
h = Height to which the refrigerator is moved = 8 m
W = Work done in lifting the object
Work done in lifting the object is same as the gravitational potential energy gained by the refrigerator. hence
Work done = Gravitation potential energy of refrigerator
W = m g h
inserting the values
W = (136) (9.8) (8)
W = 10662.4 J
The answer is (B. The study of Matter and Energy) but technically you could consider physics all of these as engineering is based on physics and that would be the study of inventions, chemistry and biology were both discovered because of physics, and physics invokes more math than any other subject as it applies math to the entire Universe.
Answer:
The force becomes 16 times what it is now.
Explanation:
The formula for gravitational force is
F = G * m1 * m2 / r^2
When you do what you have described, you are setting a stage that not even the USS Enterprise (Star Trek) can get out of. The increase is huge.
If you double m1 and m2 and don't do anything to r, you've already increased the force by 4 times. (2m1 * 2m2 = 4 * m1 * m2)
But you are not finished. If you 1/2 the distance, you are again increasing the Force by 4 times. 1 / (2r) ^2 = 1/ 4* r^2
Because this is in the denominator, the 1/4 is going to flip to the numerator.
So the total increase is going to be 4 * (4 * m1 * m2) = 16 * m1 * m2.
Think about what that means. If you were out golfing, your drives would be roughly 1/16 times as far as they are now. Also you would be lugging around 16 times your weight around the golf course. My feeling is that you would never finish 5 holes at that rate.
The First Law describes how an object acts when no force is acting upon it. So, rockets stay still until a force is applied to move them. Likewise, once they're in motion, they won't stop until a force is applied. Newton's Second Law tells us that the more mass an object has, the more force is needed to move it. A larger rocket will need stronger forces (eg. more fuel) to make it accelerate. The space shuttles required seven pounds of fuel for every pound of payload they carry. Newton's Third Law states that "every action has an equal and opposite reaction". In a rocket, burning fuel creates a push on the front of the rocket pushing it forward.