Answer:
Increase
Explanation:
The best way for me to visualize the relation between wavelength, frequency, and energy is to think about actual ocean waves. Wavelength is a measure of the distance between two equivalent points on consecutive waves (think wave peak to wave peak). Lets say you are building a sand castle and want to see how many waves hit your castle over a period of 10 seconds. If the distance between each wave is 10 ft and the wave is traveling at 1 foot per second then you will only have one wave hit your castle. If the wavelength is 1/2 that (5 ft) then you will have 2 waves hit your castle in the same amount of time. This is the same concept behind waves in physics. The smaller the distance between each wave, the more waves and therefore more energy that will be delivered.
Answer:
a) Energy stored in the capacitor, 
b) Q = 45 µC
c) C' = 1.5 μF
d) 
Explanation:
Capacitance, C = 1 µF
Charge on the plates, Q = 45 µC
a) Energy stored in the capacitor is given by the formula:

b) The charge on the plates of the capacitor will not change
It will still remains, Q = 45 µC
c) Electric field is non zero over (1-1/3) = 2/3 of d
From the relation V = Ed,
The voltage has changed by a factor of 2/3
Since the capacitance is given as C = Q/V
The new capacitance with the conductor in place, C' = (3/2) C
C' = (3/2) * 1μF
C' = 1.5 μF
d) Energy stored in the capacitor with the conductor in place

Explanation:
Given that,
Angle by the normal to the slip α= 60°
Angle by the slip direction with the tensile axis β= 35°
Shear stress = 6.2 MPa
Applied stress = 12 MPa
We need to calculate the shear stress applied at the slip plane
Using formula of shear stress

Put the value into the formula


Since, the shear stress applied at the slip plane is less than the critical resolved shear stress
So, The crystal will not yield.
Now, We need to calculate the applied stress necessary for the crystal to yield
Using formula of stress

Put the value into the formula


Hence, This is the required solution.