1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
attashe74 [19]
3 years ago
9

F(x) = (128/127)(1/2)x, x = 1,2,3,...7. determine the requested values: round your answers to three decimal places (e.g. 98.765)

. (a)p(x ≤ 1) (b)p(x > 1) (c) mean (d) variance
Mathematics
1 answer:
Marrrta [24]3 years ago
6 0
A.
\mathbb P(X\le 1)=\mathbb P(X=1)=\dfrac{128}{127}\left(\dfrac12\right)^1=\dfrac{64}{127}

b.
\mathbb P(X>1)=1-\mathbb P(X\le1)=1-\dfrac{64}{127}=\dfrac{63}{127}

c.
\mathbb E(X)=\displaystyle\sum_{x=1}^7 x\,f_X(x)=\frac{64}{127}\sum_{x=1}^7 x\left(\frac12\right)^{x-1}

Suppose f(y)=\displaystyle\sum_{x=0}^7 y^x. Then f'(y)=\displaystyle\sum_{x=1}^7 xy^{x-1}. So if we can find a closed form for f(y), in terms of y, we can find \mathbb E(X) by evaluating the derivative of f(y) at y=\dfrac12.

f(y)=\displaystyle\sum_{x=0}^7 y^x=y^0+y^1+y^2+\cdots+y^6+y^7
y\,f(y)=y^1+y^2+y^3+\cdots+y^7+y^8
f(y)-y\,f(y)=y^0-y^8
(1-y)f(y)=1-y^8
f(y)=\dfrac{1-y^8}{1-y}
\implies f'(y)=\dfrac{7y^8-8y^7+1}{(1-y)^2}
\implies\mathbb E(X)=\dfrac{64}{127}f'\left(\dfrac12\right)=\dfrac{64}{127}\times\dfrac{247}{64}=\dfrac{247}{127}

d.
\mathbb V(X)=\mathbb E(X^2)-\mathbb E(X)^2

We find \mathbb E(X^2) in a similar manner as in (c).

\mathbb E(X^2)=\displaystyle\sum_{x=1}^7 x^2\,f_X(x)=\frac{32}{127}\sum_{x=1}^7x^2\left(\frac12\right)^{x-2}

Now,

f(y)=\displaystyle\sum_{x=0}^7y^x
\implies f'(y)=\displaystyle\sum_{x=1}^7xy^{x-1}
\implies f''(y)=\displaystyle\sum_{x=2}^7x(x-1)y^{x-2}

We know that

f''(y)=-\dfrac{42y^8-96y^7+56y^6-2}{(1-y)^3}
\implies f''\left(\dfrac12\right)=\dfrac{219}{16}

We also have

f''(y)=\displaystyle\sum_{x=2}^7x(x-1)y^{x-2}
f''(y)=\displaystyle\sum_{x=2}^7x^2y^{x-2}-\sum_{x=2}^7xy^{x-2}
f''(y)=\displaystyle\frac1{y^2}\left(\sum_{x=2}^7x^2y^x-\sum_{x=2}^7xy^x\right)
f''(y)=\displaystyle\frac1{y^2}\left(\bigg(\sum_{x=1}^7x^2y^x-y\bigg)-\bigg(\sum_{x=1}^7xy^x-y\bigg)\right)
f''(y)=\displaystyle\frac1{y^2}\left(\sum_{x=1}^7x^2y^x-\sum_{x=1}^7xy^x\right)

so that when y=\dfrac12, we get

\dfrac{219}{16}=4\left(\dfrac{127}{128}\mathbb E(X^2)-\dfrac{127}{128}\mathbb E(X)\right)\implies\mathbb E(X^2)=\dfrac{685}{127}

Then

\mathbb V(X)=\dfrac{685}{127}-\left(\dfrac{247}{127}\right)^2=\dfrac{25,986}{16,129}
You might be interested in
What is the solution to the system of equations? y = A system of equations. Y equals StartFraction 2 over 3 EndFraction x plus 3
Sauron [17]

Answer:

The solution to the given system of equations is (-2,\frac{5}{3})

Therefore the values of x and y are x=-2 and y=\frac{5}{3}

Step-by-step explanation:

Given equations can be written as

y=\frac{2}{3}x+3\hfill (1)

x=-2x+3x=-2\hfill (2)

Solving equation(2) we get

x=-2

Substitute x=-2 in equation (1) we get

y=\frac{2}{3}(-2)+3

=-\frac{4}{3}+3

=\frac{-4+9}{3}

=\frac{5}{3}

Therefore the values of x and y are  x=-2 and y=\frac{5}{3}

The solution to the given system of equations is (-2,\frac{5}{3})

5 0
3 years ago
Read 2 more answers
A concession stand at an athletic event is trying to determine how much to sell cola and iced tea for in order to maximize reven
Cerrena [4.2K]

Solution :

Demand for cola : 100 – 34x + 5y

Demand for cola : 50 + 3x – 16y

Therefore, total revenue :

x(100 – 34x + 5y) + y(50 + 3x – 16y)

R(x,y)  = $100x-34x^2+5xy+50y+3xy-16y^2$

$R(x,y) = 100x-34x^2+8xy+50y-16y^2$

In order to maximize the revenue, set

$R_x=0, \ \ \ R_y=0$

$R_x=\frac{dR }{dx} = 100-68x+8y$

$R_x=0$

$68x-8y=100$  .............(i)

$R_y=\frac{dR }{dx} = 50-32x+8y$

$R_y=0$

$8x-32y=-50$  .............(ii)

Solving (i) and (ii),

4 x (i)    ⇒       272x - 32y = 400

     (ii)   ⇒   (-<u>)     8x - 32y = -50   </u>

                        264x        = 450

∴   $x=\frac{450}{264}=\frac{75}{44}$

     $y=\frac{175}{88}$

So, x ≈  $ 1.70      and    y = $ 1.99

    R(1.70, 1.99) = $ 134.94

Thus, 1.70 dollars per cola

          1.99 dollars per iced ted to maximize the revenue.

Maximum revenue = $ 134.94

4 0
3 years ago
17 + (9 + 10) = (17 + 9) + 10<br> A. True<br> O B. False
JulijaS [17]

Answer: Did you mean to rewrite that

Step-by-step explanation:

3 0
2 years ago
Read 2 more answers
Use the regression calculator to compare the teams’ number of runs with their number of wins.
Yanka [14]

Answer:

-23.21

Step-by-step explanation:

Edge 2021

5 0
2 years ago
Read 2 more answers
Any of these??? the whole page? Please it's due in 2 hours and I would love the help!
Vinvika [58]
9.This is because it goes through the whole circle passing through the centre point. at the full width
The rest are pretty easy. I'm sure you can manage. Good luck!
6 0
3 years ago
Other questions:
  • Which function has a range of y&lt;3?<br> y=3(2)<br> y=2(3)<br> O y=-(2)* +3<br> O y= (2)* - 3
    12·1 answer
  • How much string is out if a kite is 100 feet above the ground and the string makes an angle of 65° with the ground?
    15·1 answer
  • Someone help me with this pls
    14·1 answer
  • Is 7.525225222....... rational or irrational ?
    12·1 answer
  • If the length of each side of an equilateral triangle were increased by 50 percent, what would be the percent increase in the ar
    15·1 answer
  • Los ingresos de una familia son el sueldo del padre de $ 560.400 y el aporte del hijo mayor de $280.600. El 34% de estos ingreso
    14·1 answer
  • Two trapezoids-shaped tabletops are congruent to each other trapezoid FGHI =trapezoid WXYZ must be congruent to GH
    8·1 answer
  • Helppppppppppppppppppppppppppppppppppppppppppppp
    15·2 answers
  • Decide if each answer will be less than or greater than the original number drag each to the correct category
    9·2 answers
  • 98.8% of 668.49 to 2DP
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!