Answer:
6Br⁻ + XeO₃ + 6H⁺ → 3Br₂ + Xe + 3H₂O
Explanation:
First, we need to write the half-reactions:
2Br⁻ → Br₂ + 2e⁻ Oxidation -Balanced yet-
XeO₃ → Xe Reduction
To balance the reduction in acidic aqueous solution we need to add waters in the other side of the reaction as oxygens are present:
XeO₃ → Xe + 3H₂O
And H⁺ as hydrogens from water we have:
XeO₃ + 6H⁺ → Xe + 3H₂O
To balance the charge:
<h3>XeO₃ + 6H⁺ + 6e⁻ → Xe + 3H₂O Reduction -Balanced-</h3><h3 />
To cancel out the electrons of both half-reaction we need to multiply oxidation 3 times:
6Br⁻ → 3Br₂ + 6e⁻
XeO₃ + 6H⁺ + 6e⁻ → Xe + 3H₂O
And the balanced reaction in acidic aqueous solution is the sum of both half-reactions:
<h3>6Br⁻ + XeO₃ + 6H⁺ → 3Br₂ + Xe + 3H₂O </h3>
Answer: 0.176 atm
Explanation: Solution attached:
Use Boyle's Law to find the new pressure of the gas.
P1V1 = P2V2
Derive for P2
P2 = P1V1 / V2
= 5.5 atm ( 4.8 L ) / 150 L
= 0.176 atm
Answer:
DNA bases bonds with each other in this sequence
Explanation:
Guanine bonds triple bonds with cytosine respectively while Adenine bonds double bond with thymine .
The answer would be 118.68 g.
Explanation for this is:4 moles of NH3 give 4 moles of NO2
so 1mole of NH3 will give 1 mole of NO2
43.9 grams of NH3 contains 2.58 moles
so 2.58 moles will be produced of NO2
which is 118.7 grams this the amount of oxygen that is used.