Mass over volume
200 over100
2
<u>Answer:</u> The entropy change of the process is 
<u>Explanation:</u>
To calculate the entropy change for different phase at same temperature, we use the equation:

where,
= Entropy change
n = moles of acetone = 6.3 moles
= enthalpy of fusion = 5.7 kJ/mol = 5700 J/mol (Conversion factor: 1 kJ = 1000 J)
T = temperature of the system = ![-94.7^oC=[273-94.7]=178.3K](https://tex.z-dn.net/?f=-94.7%5EoC%3D%5B273-94.7%5D%3D178.3K)
Putting values in above equation, we get:

Hence, the entropy change of the process is 
5 Na molecules and 5 Cl molecules
Multiply .800 moles of O2 by Avagadro's number divided by 1 mole. This will get rid of the moles on the bottom and leave you with molecules. So technically .800 times 6.02x10^23.
Answer : The products are Silver sulfide,
and Sodium iodide,
.
Explanation :
The given balanced chemical reaction is,

From the given balanced reaction, we conclude that the 2 moles of silver iodide react with the 1 mole of sodium sulfide to give product as 1 mole of silver sulfide and 2 moles of sodium iodide.
In a chemical reaction, reactants are represent on the left side of the right-arrow and products are represent on the right side of the right-arrow.
Therefore, in a chemical reaction the products are Silver sulfide and Sodium iodide.