Complete Question
Q. Two go-carts, A and B, race each other around a 1.0km track. Go-cart A travels at a constant speed of 20m/s. Go-cart B accelerates uniformly from rest at a rate of 0.333m/s^2. Which go-cart wins the race and by how much time?
Answer:
Go-cart A is faster
Explanation:
From the question we are told that
The length of the track is
The speed of A is
The uniform acceleration of B is
Generally the time taken by go-cart A is mathematically represented as
=>
=>
Generally from kinematic equation we can evaluate the time taken by go-cart B as
given that go-cart B starts from rest u = 0 m/s
So
=>
=>
Comparing we see that is smaller so go-cart A is faster
Answer:
<h3>Salinity is the saltiness or amount of salt dissolved in a body of water, called saline water. It is usually measured in g/L or g/kg. </h3>
Voltmeter is used to find the potential difference between two points.
We always connect it in parallel to the points where we need the potential difference.
Here in order to make the reading accurate we can increase the resistance of voltmeter so that it can not withdraw any current from the circuit.
Answer:
Explanation:
For answer this we will use the law of the conservation of the angular momentum.
so:
where is the moment of inertia of the merry-go-round, is the initial angular velocity of the merry-go-round, is the moment of inertia of the merry-go-round and the child together and is the final angular velocity.
First, we will find the moment of inertia of the merry-go-round using:
I =
I =
I = 359.375 kg*m^2
Where is the mass and R is the radio of the merry-go-round
Second, we will change the initial angular velocity to rad/s as:
W = 0.520*2 rad/s
W = 3.2672 rad/s
Third, we will find the moment of inertia of both after the collision:
Finally we replace all the data:
Solving for :
Answer: From space/ astronauts
Explanation:
A black hole is a place in space where gravity pulls so much that even light can not get out. The gravity is so strong because matter has been squeezed into a tiny space. This can happen when a star is dying.
Because no light can get out, people can't see black holes. They are invisible. Space telescopes with special tools can help find black holes. The special tools can see how stars that are very close to black holes act differently than other stars.