Here is the complete question
The internal shear force V at a certain section of a steel beam is 80 kN, and the moment of inertia is 64,900,000 . Determine the horizontal shear stress at point H, which is located L = 20 mm below the centriod
The missing image which is the remaining part of this question is attached in the image below.
Answer:
The horizontal shear stress at point H is ![\mathbf{\tau_H \approx 42.604 \ N/mm^2}](https://tex.z-dn.net/?f=%5Cmathbf%7B%5Ctau_H%20%5Capprox%20%2042.604%20%5C%20N%2Fmm%5E2%7D)
Explanation:
Given that :
The internal shear force V = 80 kN = 80 × 10³ N
The moment of inertia = 64,900,000
The length = 20 mm below the centriod
The horizontal shear stress
can be calculated by using the equation:
![\tau = \dfrac{VQ}{Ib}](https://tex.z-dn.net/?f=%5Ctau%20%3D%20%5Cdfrac%7BVQ%7D%7BIb%7D)
where;
Q = moment of area above or below the point H
b = thickness of the beam = 10 mm
From the centroid ;
Q = ![Q_1 + Q_{2}](https://tex.z-dn.net/?f=Q_1%20%2B%20Q_%7B2%7D)
Q =
Q = ( ( 70 × 10) × (55) + ( 210 × 15) (90 + 15/2) ) mm³
Q = ( ( 700) × (55) + ( 3150 ) ( 97.5) ) mm³
Q = ( 38500 + 307125 ) mm³
Q = 345625 mm³
![\tau_H = \dfrac{VQ}{Ib}](https://tex.z-dn.net/?f=%5Ctau_H%20%3D%20%5Cdfrac%7BVQ%7D%7BIb%7D)
![\tau_H = \dfrac{80*10^3 * 345625}{64900000*10 }](https://tex.z-dn.net/?f=%5Ctau_H%20%3D%20%5Cdfrac%7B80%2A10%5E3%20%20%2A%20345625%7D%7B64900000%2A10%20%7D)
![\tau_H = \dfrac{2.765*10^{10}}{649000000 }](https://tex.z-dn.net/?f=%5Ctau_H%20%3D%20%5Cdfrac%7B2.765%2A10%5E%7B10%7D%7D%7B649000000%20%7D)
![\tau_H = 42.60400616 \ N/mm^2](https://tex.z-dn.net/?f=%5Ctau_H%20%3D%2042.60400616%20%5C%20N%2Fmm%5E2)
![\mathbf{\tau_H \approx 42.604 \ N/mm^2}](https://tex.z-dn.net/?f=%5Cmathbf%7B%5Ctau_H%20%5Capprox%20%2042.604%20%5C%20N%2Fmm%5E2%7D)
The horizontal shear stress at point H is ![\mathbf{\tau_H \approx 42.604 \ N/mm^2}](https://tex.z-dn.net/?f=%5Cmathbf%7B%5Ctau_H%20%5Capprox%20%2042.604%20%5C%20N%2Fmm%5E2%7D)