Answer:
it leads to attraction, only because the total energy of the electron is negative. Therefore the electron moves closer to the proton rather than farther from it an attractive force.... Electrons are negatively charged and protons are positively charged.
Answer:
a) We could not see it at all.
Explanation:
The most distant object that can be seen is the andromeda galaxy, which we may have a slight view of. The andromeda galaxy is a large galaxy that along with the previous two is also part of the local group. Spiral-type galaxy that is approximately 250,000 light years in diameter (more than twice the diameter of the Milky Way!) And is about 2.9 million light years away from our galaxy. Because of its distance, we have difficulty visualizing this galaxy, we would have this difficulty even if the andromeda galaxy was in the center of the Milky Way, but maintaining its current distance. That is, even if the andromeda galaxy were located in the same direction in space as the center of the Milky Way (but still at its current distance), we could not see it at all.
In accordance with the definition of density as r = m/V, in order to determine the density of
matter, the mass and the volume of the sample must be known.
The determination of mass can be performed directly using a weighing instrument.
The determination of volume generally cannot be performed directly. Exceptions to this rule
include
· cases where the accuracy is not required to be very high, and
· measurements performed on geometric bodies, such as cubes, cuboids or cylinders, the volume
of which can easily be determined from dimensions such as length, height and diameter.
· The volume of a liquid can be measured in a graduated cylinder or in a pipette; the volume of
solids can be determined by immersing the sample in a cylinder filled with water and then
measuring the rise in the water level.
Because of the difficulty of determining volume with precision, especially when the sample has a
highly irregular shape, a "detour" is often taken when determining the density, by making use of the
Archimedean Principle, which describes the relation between forces (or masses), volumes and
densities of solid samples immersed in liquid:
From everyday experience, everyone is familiar with the effect that an object or body appears to
be lighter than in air – just like your own body in a swimming pool.
Figure 3: The force exerted by a body on a spring scale in air (left) and in water (right)
Answer:

Explanation:
A closed system is a system where exists energy interactions with surroundings, but not mass interactions. If we neglect any energy interactions from boundary work, heat, electricity, magnetism and nuclear phenomena and assume that process occurs at steady state and all effects from non-conservative forces can be neglected, then the equation of energy conservation is reduce to this form:
(1)
Where:
- Change in kinetic energy of the system, measured in joules.
- Change in gravitational potential energy of the system, measured in joules.
If we know that
and
, then we get the following equation:
(2)
Where
and
stands for initial and final states of each energy component.
Hence, the right answer is 
Answer:
a. La ciencia.
Explicación:
El método científico de la física experimental y su búsqueda de respuestas tiene un principio básico que es la ciencia. La ciencia es la aplicación del conocimiento del mundo natural y social siguiendo una metodología sistemática basada en evidencias. Sin evidencias no hay aceptación de la observación ni se debe hacer teoría porque la evidencia es el principal criterio para aceptar o rechazar una hipótesis.