Answer:
a) FE = 0.764FG
b) a = 2.30 m/s^2
Explanation:
a) To compare the gravitational and electric force over the particle you calculate the following ratio:
(1)
FE: electric force
FG: gravitational force
q: charge of the particle = 1.6*10^-19 C
g: gravitational acceleration = 9.8 m/s^2
E: electric field = 103N/C
m: mass of the particle = 2.2*10^-15 g = 2.2*10^-18 kg
You replace the values of all parameters in the equation (1):

Then, the gravitational force is 0.764 times the electric force on the particle
b)
The acceleration of the particle is obtained by using the second Newton law:

you replace the values of all variables:

hence, the acceleration of the particle is 2.30m/s^2, the minus sign means that the particle moves downward.
The equator has no continental borders.
Answer:
The acceleration is 6 [m/s^2]
Explanation:
We can find the acceleration of the roller coaster using the kinematic equation for uniformly accelerated motion.
![v_{f} =v_{i} + a*t\\where:\\v_{f} = final velocity = 22 [m/s]\\v_{i} = initial velocity = 4 [m/s]\\t = time = 3 [s]\\](https://tex.z-dn.net/?f=v_%7Bf%7D%20%3Dv_%7Bi%7D%20%2B%20a%2At%5C%5Cwhere%3A%5C%5Cv_%7Bf%7D%20%3D%20final%20velocity%20%3D%2022%20%5Bm%2Fs%5D%5C%5Cv_%7Bi%7D%20%3D%20initial%20velocity%20%3D%204%20%5Bm%2Fs%5D%5C%5Ct%20%3D%20time%20%3D%203%20%5Bs%5D%5C%5C)
Now replacing the values we have:
![a=\frac{v_{f} - v_{i} }{t} \\a=\frac{22 - 4 }{3}\\a = 6 [m/s^{2} ]](https://tex.z-dn.net/?f=a%3D%5Cfrac%7Bv_%7Bf%7D%20-%20v_%7Bi%7D%20%7D%7Bt%7D%20%5C%5Ca%3D%5Cfrac%7B22%20-%204%20%7D%7B3%7D%5C%5Ca%20%3D%206%20%5Bm%2Fs%5E%7B2%7D%20%5D)
On Earth, the acceleration of gravity is 9.8 m/s² downward.
So any object with only gravity acting on it gains 9.8 m/s of
downward speed every second.
If the rock starts out moving upward at 10 m/s, then it will
continue upward for only (10/9.8) = 1.02 second, before
it stops rising and starts falling.
Its average speed during that time is (1/2) (10 + 0) = 5 m/s .
At an average speed of 5 m/s for 1.02 sec,
the rock rises
(5 m/s) x (1.02 sec) = 5.102 meters .