Answer: -
24 grams per kilogram.
Explanation: -
We know that
The mixing ratio = actual (measured) mass of water vapor (in parcel) in grams / mass of dry (non water vapor) air (in parcel) in kilogram
The saturation mixing ratio = mass of water vapor required for saturation (in parcel) in grams/ mass of dry (non water vapor) air (in parcel) in kilograms
Relative humidity = actual (measured) water vapor content/ maximum possible water vapor amount (saturation)
Thus saturation mixing ratio = Mixing ratio / relative humidity
= 6 / (25/100)
= 24
The answer to your question is C. A solution is a homogeneous mixture composed of two or more substances, so it couldn't have been A and D. Since a solution can't have its substances separated by a chemical means because they are chemically bonded, thus they are able to be separated by physical means
Answer:
Percent yield = 89.1%
Explanation:
Based on the equation:
Cl₂ + 2KI → 2KCl + I₂
<em>1 mole of Cl₂ reacts with 2 moles of KI to produce to moles of KCl</em>
<em />
To solve this quesiton we must find the moles of each reactant in order to find the limiting reactant. With the limiting reactant we can find the moles of KCl and the mass:
<em>Moles Cl₂:</em>
8x10²⁵ molecules * (1mol / 6.022x10²³ molecules) = 133 moles
<em>Moles KI -Molar mass: 166.0028g/mol-</em>
25g * (1mol / 166.0028g) = 0.15 moles
Here, clarely, the KI is the limiting reactant
As 2 moles of KI produce 2 moles of KCl, the moles of KCl produced are 0.15 moles. The theoretical mass is:
0.15 moles * (74.5513g / mol) =
11.2g KCl
Percent yield is: Actual yield (10.0g) / Theoretical yield (11.2g) * 100
<h3>Percent yield = 89.1%</h3>
Answer:
120 g of NaCl in 300 g H20 at 90 C
Explanation:
At x = 90 go vertical to the line for NaCl...then go left to the y-axis to find the solubility in 100 g H20 = 40
we want 300 g H20 so multiply this by 3 to get 120 gm of NaCl in 300 g
The correct response I believe is D. The reaction rate increases because the probability of collisions increases as there are more Zn atoms to react.