Answer:
C)
Explanation:
ozone is a type of oxygen. It's chemical compound is 03. Just 1 more molecule than regualr oxygen.
Glad I was able to help!!
Ok first, we have to create a balanced equation for the dissolution of nitrous acid.
HNO2 <-> H(+) + NO2(-)
Next, create an ICE table
HNO2 <--> H+ NO2-
[]i 0.230M 0M 0M
Δ[] -x +x +x
[]f 0.230-x x x
Then, using the concentration equation, you get
4.5x10^-4 = [H+][NO2-]/[HNO2]
4.5x10^-4 = x*x / .230 - x
However, because the Ka value for nitrous acid is lower than 10^-3, we can assume the amount it dissociates is negligable,
assume 0.230-x ≈ 0.230
4.5x10^-4 = x^2/0.230
Then, we solve for x by first multiplying both sides by 0.230 and then taking the square root of both sides.
We get the final concentrations of [H+] and [NO2-] to be x, which equals 0.01M.
Then to find percent dissociation, you do final concentration/initial concentration.
0.01M/0.230M = .0434 or
≈4.34% dissociation.
Answer:
116 years
Explanation:
To solve this, we will use the half life equation;
A(t) = A_o(½)^(t/t_½)
Where;
A(t) is the amount of strontium left after t years;
A_o is the initial quantity of strontium that will undergo decay;
t_½ is the half-life of strontium
t is the time it will take to decay
We are given;
A(t) = 7.5 g
A_o = 120 g
From online values, half life of strontium-90 is 29 years. Thus, t_½ = 29
Thus;
7.5 = 120 × ½^(t/29)
Divide both sides by 120 to get;
7.5/120 = ½^(t/29)
0.0625 = ½^(t/29)
In 0.0625 = (t/29) In ½
-2.772589 = (t/29) × (-0.693147)
(t/29) = -2.772589/(-0.693147)
t/29 = 4
t = 29 × 4
t = 116 years
The particles in a solid are tightly packed and locked in place. Although we cannot see it or feel it, the particles are vibrating in place.
As these molecules heat up, they will vibrate more vigorously, and will eventually turn to water, then gas.