B). light energy is not required to proceed
Explanation:
In the Calvin cycle of photosynthesis, light energy is not required. The Calvin cycle is light independent and it is made up of a series of redox reactions.
- During photosynthesis reactions, green plants manufacture their food using carbon dioxide, sunlight and water.
- During the Calvin cycle aspect, light energy is not required for chemical reactions to take place. The light energy helps to move electrons.
- The cycle is also known as dark reactions.
- It is at this stage that carbon dioxide combines with water to form glucose.
- The reaction is initiated with light energy which produces NADPH and ATP.
- The Calvin cycle follows by using the NADPH and ATP to produce glucose in the dark phase.
Learn more:
ATP brainly.com/question/2953868
Light dependent reactions brainly.com/question/6866300
#learnwithBrainly
Gin is uniform throughout and is a homogenous mixture. If it wasn't you would have awful lumps in your drink :). Hope I helped!
1) is C because the arrows are pointing in so that means to squeeze
3) is A as the picture shows the dropper
Answer:
Newton's Cradle is a neat way to demonstrate the principle of the CONSERVATION OF MOMENTUM.
What happens here is when the ball on one end of the cradle is swung and it hits the other balls that are motionless, or stationary, the momentum of the swinging ball is transferred to the next ball upon impact.
Momentum is not lost in this action, what happens when it hits the next ball, the momentum is transferred to the next one, and then the next, and the the next, till it reaches the last ball on the other end. Since nothing is next to the last ball, it pushes the ball upwards, which will swing down and repeat the process going the other way.
This also demonstrates the CONSERVATION OF ENERGY. As you will see, the energy continues to move through the other balls, passing it from one ball to the other, which keeps this constantly moving.
Answer:
C.
Fusion reactions require a lot of heat and pressure
Explanation:
nuclear fusion takes place only at extremely high temperatures. That's because a great deal of energy is needed to overcome the force of repulsion between the positively charged nuclei. ... A: Nuclear fusion doesn't occur naturally on Earth because it requires temperatures far higher than Earth temperatures.