Answer:

Explanation:
Hello,
In this case, the enthalpy of combustion is understood as the energy released when one mole of fuel, in this case octene, is burned in the presence of oxygen and is computed with the enthalpies of formation of the fuel, carbon dioxide and water as shown below (oxygen is circumvented as it is a pure element):

Thus, since we already know the enthalpy of combustion of the fuel, for carbon and water we have -393.5 and -241.8 kJ/mol respectively, thereby, the enthalpy of combustion turns out:

Best regards.
Answer:
The number ratio is 4:7
Explanation:
Step 1: Data given
Compound 1 has 50.48 % oxygen
Compound 2 has 36.81 % oxygen
Molar mass oxygen = 16 g/mol
Molar mass manganese = 54.94 g/mol
Step 2: Calculate % manganes
Compound 1: 100 - 50.48 = 49.52 %
Compound 2: 100 - 36.81 = 63.19 %
Step 3: Calculate mass
Suppose mass of compounds = 100 grams
Compound 1:
50.48 % O = 50.48 grams
49.52 % Mn = 49.52 grams
Compound 2:
36.81 % O = 36.81 grams
63.19 % Mn = 63.19 grams
Step 4: Calculate moles
Compound 1
Moles O = 50.48 grams / 16.0 g/mol = 3.155 moles
Moles Mn = 49.52 grams / 54.94 g/mol = 0.9013 moles
Compound 2
Moles O = 36.81 grams / 16.0 g/mol = 2.301 moles
Moles Mn = 63.19 grams / 54.94 g/mol = 1.150 moles
Step 5: calculate mol ratio
We will divide by the smallest amount of moles
Compound 1
O: 3.155/0.9013 = 3.5
Mn: 0.9013 / 0.9013 = 1
Mn2O7
Compound 2
O: 2.301 / 1.150 = 2
Mn: 1.150 / 1.150 = 1
MnO2
The number ratio is 2:3.5 or 4:7
Answer:
178.67K
Explanation:
PV=nRT
T=PV/nR
= 1.072atm*20L/1.485mol*0.0821LatmK^-1
=178.67K