Answer:
im the only answer your gonna get
Explanation:
Answer:
e. 3.08 x 10⁻² mol of ions.
Explanation:
- Every 1.0 mole of any compound contains Avogadro's number of molecules (6.022 x 10²³).
- We can get the no. of moles of NiCl₂ using cross multiplication:
1.0 mol NiCl₂ contains → 6.022 x 10²³ molecules.
??? mol NiCl₂ contains → 6.188 x 10²¹ molecules.
∴ The no. of moles of NiCl₂ = (1.0 mol)(6.188 x 10²¹ molecules)/(6.022 x 10²³ molecules) = 1.028 x 10⁻² mol.
- NiCl₂ is ionized according to the equation:
NiCl₂ → Ni²⁺ + 2Cl⁻.
Which means that every 1.0 mol of NiCl₂ is ionized to produce 3.0 moles (1.0 mol of Ni²⁺ and 2 moles of Cl⁻).
<em>∴ The total moles of ions are released</em> = 3 x 1.028 x 10⁻² mol = <em>3.083 x 10⁻² mol of ions.</em>
Answer:
16.5 dm³
Explanation:
Data Given:
no. moles of O₂ = 0.735 moles
volume of O₂ = ?
Solution:
Now
we have to find volume of O₂ gas
Formula used for this purpose
No. of moles = Volume / molar volume
where
molar volume at STP for Oxygen (O₂) = 22.4 dm³/mol
No. of moles O₂ = Volume of O₂ / 22.4 dm³/mol . . . . . .(1)
Put values in equation 1
0.735 = Volume of O₂ / 22.4 dm³/ mol
rearrange above equation
Volume of O₂ = 0.735 x 22.4 dm³/ mol
Volume of O₂ = 16.5 dm³
So,
the volume of O₂ at STP is 16.5 dm³
Enthalpy is energy of bonds broken - energy of bonds formed. Here, the NH3 and O2 are broken and H2O and NO are formed. So the energy to break the NH3 bonds is 3 times the amount of energy it takes to break a N-H single bond (because there are three of them in a NH3 molecule) and then multiplied by 4 because there are four particles.
So the energy of the bonds broken is 12x the energy to break a N-H single bond plus 5x the amount of energy to break an O—O double bond (you don’t multiply this by anything because in each O2 molecule there is only one bond).
The energy of the bonds formed is 6*2 = 12 Times the amount of energy for a O-H single bond plus 4 times the amount of energy required to break a N—O double bond.
Subtract energy of bonds broken - energy of bonds formed and this is the change in enthalpy.
To know what type of bond it is, draw the Lewis structure.