Answer:
The electric force will be 0 N
Explanation:
From the question we are told that
The magnitude of the charge is 
Generally from Coulombs law the electric force between two charges is mathematically represented as

Here r is the distance of separation between that two charges.
Now from the question we are told that the charge is far away from any other charge hence we can say that the distance between the charge and any other charge is 
So

=> 
Hence the electric force will be 0 N
Answer:
The energy may be carried in the form of (1) radiation, where energy travels in the form of light, and (2) convection, where energy is carried by physical motion of upwelling solar gas.
Explanation:
Body works like a computer whenever there is any problem it warns you and those warnings are termed as symptoms. Of the body doesn't show symptoms we won't be able to detect the problem in our body.
The amplitude of the wave is the 'full height of the wave.' Amplitude is measured in m (meters) and is measured over the change of a single period.
Answer:
Explanation:
An inelastic collision is one where 2 masses collide and stick together, moving as a single mass after the collision occurs. When we talk about this type of momentum conservation, the momentum is conserved always, but the kinetic momentum is not (the velocity changes when they collide). Because there is direction involved here, we use vector addition. The picture before the collision has the truck at a mass of 3520 kg moving north at a velocity of 18.5. The truck's momentum, then, is 3520(18.5) = 65100 kgm/s; coming at this truck is a car of mass 1480 kg traveling east at an unknown velocity. The car's momentum, then, is 1480v. The resulting vector (found when you pick up the car vector and stick the initial end of it to the terminal end of the truck's momentum vector) forms the hypotenuse of a right triangle where one leg is 65100 kgm/s, and the other leg is 1480v. Since we already know the final velocity of the 2 masses after the collision, we can use that to find the final momentum, which will serve as the resultant momentum vector in our equation (we'll get there in a sec). The final momentum of this collision is
p = mv and
p = (3520 + 1480)(13.6) so
p = 68000. Final momentum. The equation for this is a take-off of Pythagorean's Theorem and the one used to find the final magnitude of a resultant vector when you first began your vector math in physics. The equation is
which, in words, is
the final momentum after the collision is equal to the square root of the truck's momentum squared plus the car's momentum squared. Filling in:
and
and
and
and
so
v = 13.3 m/s at 72.6°