Hi there! Lets see!
- m is mass, and its units are kg
- k is the elastic constant measured in newtons per meter (N/m), or kilograms per second squared kg/s²
Therefore:
![\sqrt{\dfrac{m}{k}} =\sqrt{\dfrac{[kg]}{[\dfrac{kg}{s^2}]}}  =\sqrt{\dfrac{[kg]}{[kg]}\cdot s^2} = \sqrt{[s]^2} = s](https://tex.z-dn.net/?f=%5Csqrt%7B%5Cdfrac%7Bm%7D%7Bk%7D%7D%20%3D%5Csqrt%7B%5Cdfrac%7B%5Bkg%5D%7D%7B%5B%5Cdfrac%7Bkg%7D%7Bs%5E2%7D%5D%7D%7D%20%20%3D%5Csqrt%7B%5Cdfrac%7B%5Bkg%5D%7D%7B%5Bkg%5D%7D%5Ccdot%20s%5E2%7D%20%3D%20%5Csqrt%7B%5Bs%5D%5E2%7D%20%3D%20s)
The period is given in seconds so the formula is dimensionally correct.
 
        
             
        
        
        
Answer:
 W = 112.58 N-unit
Explanation:
Given:
 - Force F = 10 N
 - Angle Q of force with x axis: 30 degrees
 - distance to be moved d = 13 units along + x axis
Find:
Work Done by the force F:
Solution:
The work by force in positive x direction can only be done if the both the direction of distance traveled and direction of force are parallel vectors. Hence we compute the component of Force F in x direction F_x:
                                        F_x = F*cos(Q) 
                                        F_x = 10*cos(30)
                                        F_x = 8.66 N 
         Hence,
                                   Work Done by force
                                         W = F_x * d
                                        W = 8.66 * 13
                                    W = 112.58 N-unit
 
        
             
        
        
        
What is the speed of a wave if it is 8 meters long and has a frequency if 3 hz? 
 
the answer is 24 m/s 
        
             
        
        
        
Answer:
B = (4.76 × 10⁻⁷) T
Explanation:
From Biot Savart's law, the magnetic field formula is given as
B = (μ₀I)/(2πr)
B = magnetic field = ?
I = current = 238 mA = 0.238 A
μ₀ = magnetic constant = (4π × 10⁻⁷) H/m
r = 10 cm = 0.1 m
B = [4π × 10⁻⁷ × 0.238)/(2π×0.1)]
B = (4.76 × 10⁻⁷) T
The direction of the magnetic field is in the clockwise direction wrapped around the current-carrying wire.
Hope this Helps!!!